{ "cells": [ { "cell_type": "markdown", "metadata": { "cell_id": "ffe0822a989c4c0ca46d568862a0d8f8", "deepnote_cell_height": 312.46875, "deepnote_cell_type": "markdown", "tags": [] }, "source": [ "# Week 3 Tuesday Discussion" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "5f78015f6f774845a9e5873a41c4f07b", "deepnote_cell_height": 99, "deepnote_cell_type": "markdown", "tags": [] }, "source": [ "## Quiz 2 Review" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cell_id": "6a2cbbe38ae648c28d42ab0d8e7447b5", "deepnote_cell_height": 654, "deepnote_cell_type": "code", "deepnote_table_loading": false, "deepnote_table_state": { "filters": [], "pageIndex": 1, "pageSize": 10, "sortBy": [] }, "deepnote_to_be_reexecuted": false, "execution_millis": 3345, "execution_start": 1649822292686, "source_hash": "ce3a0762", "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maledeckembark_townalivealone
003male22.0107.2500SThirdmanTrueNaNSouthamptonnoFalse
111female38.01071.2833CFirstwomanFalseCCherbourgyesFalse
213female26.0007.9250SThirdwomanFalseNaNSouthamptonyesTrue
311female35.01053.1000SFirstwomanFalseCSouthamptonyesFalse
403male35.0008.0500SThirdmanTrueNaNSouthamptonnoTrue
................................................
88602male27.00013.0000SSecondmanTrueNaNSouthamptonnoTrue
88711female19.00030.0000SFirstwomanFalseBSouthamptonyesTrue
88803femaleNaN1223.4500SThirdwomanFalseNaNSouthamptonnoFalse
88911male26.00030.0000CFirstmanTrueCCherbourgyesTrue
89003male32.0007.7500QThirdmanTrueNaNQueenstownnoTrue
\n", "

891 rows × 15 columns

\n", "
" ], "text/plain": [ " survived pclass sex age sibsp parch fare embarked class \\\n", "0 0 3 male 22.0 1 0 7.2500 S Third \n", "1 1 1 female 38.0 1 0 71.2833 C First \n", "2 1 3 female 26.0 0 0 7.9250 S Third \n", "3 1 1 female 35.0 1 0 53.1000 S First \n", "4 0 3 male 35.0 0 0 8.0500 S Third \n", ".. ... ... ... ... ... ... ... ... ... \n", "886 0 2 male 27.0 0 0 13.0000 S Second \n", "887 1 1 female 19.0 0 0 30.0000 S First \n", "888 0 3 female NaN 1 2 23.4500 S Third \n", "889 1 1 male 26.0 0 0 30.0000 C First \n", "890 0 3 male 32.0 0 0 7.7500 Q Third \n", "\n", " who adult_male deck embark_town alive alone \n", "0 man True NaN Southampton no False \n", "1 woman False C Cherbourg yes False \n", "2 woman False NaN Southampton yes True \n", "3 woman False C Southampton yes False \n", "4 man True NaN Southampton no True \n", ".. ... ... ... ... ... ... \n", "886 man True NaN Southampton no True \n", "887 woman False B Southampton yes True \n", "888 woman False NaN Southampton no False \n", "889 man True C Cherbourg yes True \n", "890 man True NaN Queenstown no True \n", "\n", "[891 rows x 15 columns]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import seaborn as sns\n", "\n", "df = sns.load_dataset(\"titanic\")\n", "df" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "7e6805dfbf5849d7bcfb09d5cc965c30", "deepnote_cell_height": 223.78125, "deepnote_cell_type": "markdown", "tags": [] }, "source": [ "__Question 1__: \n", "\n", "- Write code to determine which columns of `df` contain missing values. Do the same to determine which rows of `df` contain missing values. \n", "\n", "- Write code to determine which rows of `df` contain at least 2 missing values.\n", "\n", "- Create a sub-DataFrame of `df` which contains only rows which have at least one missing value.\n", "\n", "- Create a sub-DataFrame of `df` which contains only rows which have at least one missing value and `embark_town` listed as Southampton." ] }, { "cell_type": "markdown", "metadata": { "cell_id": "60ce922cc9404b808f17dc02035978b8", "deepnote_cell_height": 87, "deepnote_cell_type": "markdown", "tags": [] }, "source": [ "## Code-Along Solutions" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "cell_id": "56a54eba3a244b859afa2c1c3906a10d", "deepnote_cell_height": 118.1875, "deepnote_cell_type": "code", "deepnote_output_heights": [ 21.1875 ], "deepnote_to_be_reexecuted": false, "execution_millis": 8, "execution_start": 1649822296037, "source_hash": "98137b40", "tags": [] }, "outputs": [ { "data": { "text/plain": [ "['age', 'embarked', 'deck', 'embark_town']" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[c for c in df.columns if df[c].isna().any()]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "cell_id": "f46d8da6fc5742c5a3d43531821cdc93", "deepnote_cell_height": 111.796875, "deepnote_cell_type": "code", "deepnote_output_heights": [ 611 ], "deepnote_to_be_reexecuted": false, "execution_millis": 1039, "execution_start": 1649822296225, "is_code_hidden": false, "is_output_hidden": true, "source_hash": "c99efd9c", "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/plain": [ "[0,\n", " 2,\n", " 4,\n", " 5,\n", " 7,\n", " 8,\n", " 9,\n", " 12,\n", " 13,\n", " 14,\n", " 15,\n", " 16,\n", " 17,\n", " 18,\n", " 19,\n", " 20,\n", " 22,\n", " 24,\n", " 25,\n", " 26,\n", " 28,\n", " 29,\n", " 30,\n", " 31,\n", " 32,\n", " 33,\n", " 34,\n", " 35,\n", " 36,\n", " 37,\n", " 38,\n", " 39,\n", " 40,\n", " 41,\n", " 42,\n", " 43,\n", " 44,\n", " 45,\n", " 46,\n", " 47,\n", " 48,\n", " 49,\n", " 50,\n", " 51,\n", " 53,\n", " 55,\n", " 56,\n", " 57,\n", " 58,\n", " 59,\n", " 60,\n", " 61,\n", " 63,\n", " 64,\n", " 65,\n", " 67,\n", " 68,\n", " 69,\n", " 70,\n", " 71,\n", " 72,\n", " 73,\n", " 74,\n", " 76,\n", " 77,\n", " 78,\n", " 79,\n", " 80,\n", " 81,\n", " 82,\n", " 83,\n", " 84,\n", " 85,\n", " 86,\n", " 87,\n", " 89,\n", " 90,\n", " 91,\n", " 93,\n", " 94,\n", " 95,\n", " 98,\n", " 99,\n", " 100,\n", " 101,\n", " 103,\n", " 104,\n", " 105,\n", " 106,\n", " 107,\n", " 108,\n", " 109,\n", " 111,\n", " 112,\n", " 113,\n", " 114,\n", " 115,\n", " 116,\n", " 117,\n", " 119,\n", " 120,\n", " 121,\n", " 122,\n", " 125,\n", " 126,\n", " 127,\n", " 128,\n", " 129,\n", " 130,\n", " 131,\n", " 132,\n", " 133,\n", " 134,\n", " 135,\n", " 138,\n", " 140,\n", " 141,\n", " 142,\n", " 143,\n", " 144,\n", " 145,\n", " 146,\n", " 147,\n", " 149,\n", " 150,\n", " 152,\n", " 153,\n", " 154,\n", " 155,\n", " 156,\n", " 157,\n", " 158,\n", " 159,\n", " 160,\n", " 161,\n", " 162,\n", " 163,\n", " 164,\n", " 165,\n", " 166,\n", " 167,\n", " 168,\n", " 169,\n", " 171,\n", " 172,\n", " 173,\n", " 175,\n", " 176,\n", " 178,\n", " 179,\n", " 180,\n", " 181,\n", " 182,\n", " 184,\n", " 185,\n", " 186,\n", " 187,\n", " 188,\n", " 189,\n", " 190,\n", " 191,\n", " 192,\n", " 196,\n", " 197,\n", " 198,\n", " 199,\n", " 200,\n", " 201,\n", " 202,\n", " 203,\n", " 204,\n", " 206,\n", " 207,\n", " 208,\n", " 210,\n", " 211,\n", " 212,\n", " 213,\n", " 214,\n", " 216,\n", " 217,\n", " 219,\n", " 220,\n", " 221,\n", " 222,\n", " 223,\n", " 225,\n", " 226,\n", " 227,\n", " 228,\n", " 229,\n", " 231,\n", " 232,\n", " 233,\n", " 234,\n", " 235,\n", " 236,\n", " 237,\n", " 238,\n", " 239,\n", " 240,\n", " 241,\n", " 242,\n", " 243,\n", " 244,\n", " 246,\n", " 247,\n", " 249,\n", " 250,\n", " 253,\n", " 254,\n", " 255,\n", " 256,\n", " 258,\n", " 259,\n", " 260,\n", " 261,\n", " 264,\n", " 265,\n", " 266,\n", " 267,\n", " 270,\n", " 271,\n", " 272,\n", " 274,\n", " 276,\n", " 277,\n", " 278,\n", " 279,\n", " 280,\n", " 281,\n", " 282,\n", " 283,\n", " 284,\n", " 285,\n", " 286,\n", " 287,\n", " 288,\n", " 289,\n", " 290,\n", " 293,\n", " 294,\n", " 295,\n", " 296,\n", " 298,\n", " 300,\n", " 301,\n", " 302,\n", " 303,\n", " 304,\n", " 306,\n", " 308,\n", " 312,\n", " 313,\n", " 314,\n", " 315,\n", " 316,\n", " 317,\n", " 320,\n", " 321,\n", " 322,\n", " 323,\n", " 324,\n", " 326,\n", " 328,\n", " 330,\n", " 333,\n", " 334,\n", " 335,\n", " 338,\n", " 339,\n", " 342,\n", " 343,\n", " 344,\n", " 346,\n", " 347,\n", " 348,\n", " 349,\n", " 350,\n", " 351,\n", " 352,\n", " 353,\n", " 354,\n", " 355,\n", " 357,\n", " 358,\n", " 359,\n", " 360,\n", " 361,\n", " 362,\n", " 363,\n", " 364,\n", " 365,\n", " 367,\n", " 368,\n", " 371,\n", " 372,\n", " 373,\n", " 374,\n", " 375,\n", " 376,\n", " 378,\n", " 379,\n", " 380,\n", " 381,\n", " 382,\n", " 383,\n", " 384,\n", " 385,\n", " 386,\n", " 387,\n", " 388,\n", " 389,\n", " 391,\n", " 392,\n", " 395,\n", " 396,\n", " 397,\n", " 398,\n", " 399,\n", " 400,\n", " 401,\n", " 402,\n", " 403,\n", " 404,\n", " 405,\n", " 406,\n", " 407,\n", " 408,\n", " 409,\n", " 410,\n", " 411,\n", " 413,\n", " 414,\n", " 415,\n", " 416,\n", " 417,\n", " 418,\n", " 419,\n", " 420,\n", " 421,\n", " 422,\n", " 423,\n", " 424,\n", " 425,\n", " 426,\n", " 427,\n", " 428,\n", " 431,\n", " 432,\n", " 433,\n", " 436,\n", " 437,\n", " 439,\n", " 440,\n", " 441,\n", " 442,\n", " 443,\n", " 444,\n", " 446,\n", " 447,\n", " 448,\n", " 450,\n", " 451,\n", " 454,\n", " 455,\n", " 457,\n", " 458,\n", " 459,\n", " 461,\n", " 463,\n", " 464,\n", " 465,\n", " 466,\n", " 467,\n", " 468,\n", " 469,\n", " 470,\n", " 471,\n", " 472,\n", " 474,\n", " 475,\n", " 476,\n", " 477,\n", " 478,\n", " 479,\n", " 480,\n", " 481,\n", " 482,\n", " 483,\n", " 485,\n", " 488,\n", " 489,\n", " 490,\n", " 491,\n", " 493,\n", " 494,\n", " 495,\n", " 497,\n", " 499,\n", " 500,\n", " 501,\n", " 502,\n", " 503,\n", " 506,\n", " 507,\n", " 508,\n", " 509,\n", " 510,\n", " 511,\n", " 513,\n", " 514,\n", " 517,\n", " 518,\n", " 519,\n", " 521,\n", " 522,\n", " 524,\n", " 525,\n", " 526,\n", " 527,\n", " 528,\n", " 529,\n", " 530,\n", " 531,\n", " 532,\n", " 533,\n", " 534,\n", " 535,\n", " 537,\n", " 538,\n", " 541,\n", " 542,\n", " 543,\n", " 545,\n", " 546,\n", " 547,\n", " 548,\n", " 549,\n", " 551,\n", " 552,\n", " 553,\n", " 554,\n", " 555,\n", " 557,\n", " 559,\n", " 560,\n", " 561,\n", " 562,\n", " 563,\n", " 564,\n", " 565,\n", " 566,\n", " 567,\n", " 568,\n", " 569,\n", " 570,\n", " 573,\n", " 574,\n", " 575,\n", " 576,\n", " 578,\n", " 579,\n", " 580,\n", " 582,\n", " 584,\n", " 586,\n", " 588,\n", " 589,\n", " 590,\n", " 592,\n", " 593,\n", " 594,\n", " 595,\n", " 596,\n", " 597,\n", " 598,\n", " 600,\n", " 601,\n", " 602,\n", " 603,\n", " 604,\n", " 605,\n", " 606,\n", " 607,\n", " 608,\n", " 610,\n", " 611,\n", " 612,\n", " 613,\n", " 614,\n", " 615,\n", " 616,\n", " 617,\n", " 619,\n", " 620,\n", " 622,\n", " 623,\n", " 624,\n", " 626,\n", " 628,\n", " 629,\n", " 631,\n", " 633,\n", " 634,\n", " 635,\n", " 636,\n", " 637,\n", " 638,\n", " 639,\n", " 640,\n", " 642,\n", " 643,\n", " 644,\n", " 646,\n", " 648,\n", " 649,\n", " 650,\n", " 651,\n", " 652,\n", " 653,\n", " 654,\n", " 655,\n", " 656,\n", " 657,\n", " 658,\n", " 660,\n", " 661,\n", " 663,\n", " 664,\n", " 665,\n", " 666,\n", " 667,\n", " 668,\n", " 669,\n", " 670,\n", " 672,\n", " 673,\n", " 674,\n", " 675,\n", " 676,\n", " 677,\n", " 678,\n", " 680,\n", " 682,\n", " 683,\n", " 684,\n", " 685,\n", " 686,\n", " 687,\n", " 688,\n", " 691,\n", " 692,\n", " 693,\n", " 694,\n", " 695,\n", " 696,\n", " 697,\n", " 702,\n", " 703,\n", " 704,\n", " 705,\n", " 706,\n", " 708,\n", " 709,\n", " 711,\n", " 713,\n", " 714,\n", " 718,\n", " 719,\n", " 720,\n", " 721,\n", " 722,\n", " 723,\n", " 725,\n", " 726,\n", " 727,\n", " 728,\n", " 729,\n", " 731,\n", " 732,\n", " 733,\n", " 734,\n", " 735,\n", " 736,\n", " 738,\n", " 739,\n", " 740,\n", " 743,\n", " 744,\n", " 746,\n", " 747,\n", " 749,\n", " 750,\n", " 752,\n", " 753,\n", " 754,\n", " 755,\n", " 756,\n", " 757,\n", " 758,\n", " 760,\n", " 761,\n", " 762,\n", " 764,\n", " 766,\n", " 767,\n", " 768,\n", " 769,\n", " 770,\n", " 771,\n", " 773,\n", " 774,\n", " 775,\n", " 776,\n", " 777,\n", " 778,\n", " 780,\n", " 783,\n", " 784,\n", " 785,\n", " 786,\n", " 787,\n", " 788,\n", " 790,\n", " 791,\n", " 792,\n", " 793,\n", " 794,\n", " 795,\n", " 797,\n", " 798,\n", " 799,\n", " 800,\n", " 801,\n", " 803,\n", " 804,\n", " 805,\n", " 807,\n", " 808,\n", " 810,\n", " 811,\n", " 812,\n", " 813,\n", " 814,\n", " 815,\n", " 816,\n", " 817,\n", " 818,\n", " 819,\n", " 821,\n", " 822,\n", " 824,\n", " 825,\n", " 826,\n", " 827,\n", " 828,\n", " 829,\n", " 830,\n", " 831,\n", " 832,\n", " 833,\n", " 834,\n", " 836,\n", " 837,\n", " 838,\n", " 839,\n", " 840,\n", " 841,\n", " 842,\n", " 843,\n", " 844,\n", " 845,\n", " 846,\n", " 847,\n", " 848,\n", " 849,\n", " 850,\n", " 851,\n", " 852,\n", " 854,\n", " 855,\n", " 856,\n", " 858,\n", " 859,\n", " 860,\n", " 861,\n", " 863,\n", " 864,\n", " 865,\n", " 866,\n", " 868,\n", " 869,\n", " 870,\n", " 873,\n", " 874,\n", " 875,\n", " 876,\n", " 877,\n", " 878,\n", " 880,\n", " 881,\n", " 882,\n", " 883,\n", " 884,\n", " 885,\n", " 886,\n", " 888,\n", " 890]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[r for r in df.index if df.iloc[r].isna().any()]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "cell_id": "e1ce9c9b04814c0b94ca346a25a958a5", "deepnote_cell_height": 111.796875, "deepnote_cell_type": "code", "deepnote_output_heights": [ 611 ], "deepnote_to_be_reexecuted": false, "execution_millis": 802, "execution_start": 1649822296869, "is_output_hidden": true, "source_hash": "96eaa290", "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/plain": [ "[5,\n", " 17,\n", " 19,\n", " 26,\n", " 28,\n", " 29,\n", " 32,\n", " 36,\n", " 42,\n", " 45,\n", " 46,\n", " 47,\n", " 48,\n", " 61,\n", " 64,\n", " 65,\n", " 76,\n", " 77,\n", " 82,\n", " 87,\n", " 95,\n", " 101,\n", " 107,\n", " 109,\n", " 121,\n", " 126,\n", " 140,\n", " 154,\n", " 158,\n", " 159,\n", " 168,\n", " 176,\n", " 180,\n", " 181,\n", " 186,\n", " 196,\n", " 198,\n", " 201,\n", " 214,\n", " 223,\n", " 229,\n", " 235,\n", " 240,\n", " 241,\n", " 250,\n", " 256,\n", " 260,\n", " 264,\n", " 270,\n", " 274,\n", " 277,\n", " 295,\n", " 300,\n", " 301,\n", " 304,\n", " 306,\n", " 324,\n", " 330,\n", " 334,\n", " 335,\n", " 347,\n", " 354,\n", " 358,\n", " 359,\n", " 364,\n", " 367,\n", " 368,\n", " 375,\n", " 384,\n", " 388,\n", " 409,\n", " 410,\n", " 411,\n", " 413,\n", " 415,\n", " 420,\n", " 425,\n", " 428,\n", " 431,\n", " 444,\n", " 451,\n", " 454,\n", " 459,\n", " 464,\n", " 466,\n", " 468,\n", " 470,\n", " 481,\n", " 485,\n", " 490,\n", " 495,\n", " 497,\n", " 502,\n", " 507,\n", " 511,\n", " 517,\n", " 522,\n", " 524,\n", " 531,\n", " 533,\n", " 538,\n", " 547,\n", " 552,\n", " 557,\n", " 560,\n", " 563,\n", " 564,\n", " 568,\n", " 573,\n", " 578,\n", " 584,\n", " 589,\n", " 593,\n", " 596,\n", " 598,\n", " 601,\n", " 602,\n", " 611,\n", " 612,\n", " 613,\n", " 629,\n", " 633,\n", " 639,\n", " 643,\n", " 648,\n", " 650,\n", " 653,\n", " 656,\n", " 667,\n", " 674,\n", " 680,\n", " 692,\n", " 697,\n", " 709,\n", " 718,\n", " 727,\n", " 732,\n", " 738,\n", " 739,\n", " 760,\n", " 766,\n", " 768,\n", " 773,\n", " 778,\n", " 783,\n", " 790,\n", " 792,\n", " 793,\n", " 825,\n", " 826,\n", " 828,\n", " 829,\n", " 832,\n", " 837,\n", " 846,\n", " 859,\n", " 863,\n", " 868,\n", " 878,\n", " 888]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[r for r in df.index if df.iloc[r].isna().sum() >= 2]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "cell_id": "b6d5c81dd5544512b6ad7311abfc85c3", "deepnote_cell_height": 600, "deepnote_cell_type": "code", "deepnote_to_be_reexecuted": false, "execution_millis": 927, "execution_start": 1649822299483, "source_hash": "8262a969", "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maledeckembark_townalivealone
003male22.0107.2500SThirdmanTrueNaNSouthamptonnoFalse
213female26.0007.9250SThirdwomanFalseNaNSouthamptonyesTrue
403male35.0008.0500SThirdmanTrueNaNSouthamptonnoTrue
503maleNaN008.4583QThirdmanTrueNaNQueenstownnoTrue
703male2.03121.0750SThirdchildFalseNaNSouthamptonnoFalse
................................................
88403male25.0007.0500SThirdmanTrueNaNSouthamptonnoTrue
88503female39.00529.1250QThirdwomanFalseNaNQueenstownnoFalse
88602male27.00013.0000SSecondmanTrueNaNSouthamptonnoTrue
88803femaleNaN1223.4500SThirdwomanFalseNaNSouthamptonnoFalse
89003male32.0007.7500QThirdmanTrueNaNQueenstownnoTrue
\n", "

709 rows × 15 columns

\n", "
" ], "text/plain": [ " survived pclass sex age sibsp parch fare embarked class \\\n", "0 0 3 male 22.0 1 0 7.2500 S Third \n", "2 1 3 female 26.0 0 0 7.9250 S Third \n", "4 0 3 male 35.0 0 0 8.0500 S Third \n", "5 0 3 male NaN 0 0 8.4583 Q Third \n", "7 0 3 male 2.0 3 1 21.0750 S Third \n", ".. ... ... ... ... ... ... ... ... ... \n", "884 0 3 male 25.0 0 0 7.0500 S Third \n", "885 0 3 female 39.0 0 5 29.1250 Q Third \n", "886 0 2 male 27.0 0 0 13.0000 S Second \n", "888 0 3 female NaN 1 2 23.4500 S Third \n", "890 0 3 male 32.0 0 0 7.7500 Q Third \n", "\n", " who adult_male deck embark_town alive alone \n", "0 man True NaN Southampton no False \n", "2 woman False NaN Southampton yes True \n", "4 man True NaN Southampton no True \n", "5 man True NaN Queenstown no True \n", "7 child False NaN Southampton no False \n", ".. ... ... ... ... ... ... \n", "884 man True NaN Southampton no True \n", "885 woman False NaN Queenstown no False \n", "886 man True NaN Southampton no True \n", "888 woman False NaN Southampton no False \n", "890 man True NaN Queenstown no True \n", "\n", "[709 rows x 15 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[[r for r in df.index if df.loc[r].isna().any()]]" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "dab3b64be1324e728142fe9f8f1e9c3c", "deepnote_cell_height": 82, "deepnote_cell_type": "markdown", "owner_user_id": "e590e996-b52f-4e48-8e79-35525bbb42f6", "tags": [] }, "source": [ "## Pre-Written Solutions" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "cell_id": "39520c12d9dd4bf79ddd26fe182f76df", "deepnote_cell_height": 136.1875, "deepnote_cell_type": "code", "deepnote_output_heights": [ 21.1875 ], "deepnote_to_be_reexecuted": false, "execution_millis": 11, "execution_start": 1649822297676, "source_hash": "e79b2bd4", "tags": [] }, "outputs": [ { "data": { "text/plain": [ "['age', 'embarked', 'deck', 'embark_town']" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Missing columns\n", "[c for c in df.columns if df[c].isna().any()]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "cell_id": "577f4136b1b14478b7158ae6d516a850", "deepnote_cell_height": 129.796875, "deepnote_cell_type": "code", "deepnote_to_be_reexecuted": false, "execution_millis": 603, "execution_start": 1649822297914, "is_output_hidden": true, "source_hash": "3d32729d", "tags": [ "output_scroll" ] }, "outputs": [ { "data": { "text/plain": [ "[0,\n", " 2,\n", " 4,\n", " 5,\n", " 7,\n", " 8,\n", " 9,\n", " 12,\n", " 13,\n", " 14,\n", " 15,\n", " 16,\n", " 17,\n", " 18,\n", " 19,\n", " 20,\n", " 22,\n", " 24,\n", " 25,\n", " 26,\n", " 28,\n", " 29,\n", " 30,\n", " 31,\n", " 32,\n", " 33,\n", " 34,\n", " 35,\n", " 36,\n", " 37,\n", " 38,\n", " 39,\n", " 40,\n", " 41,\n", " 42,\n", " 43,\n", " 44,\n", " 45,\n", " 46,\n", " 47,\n", " 48,\n", " 49,\n", " 50,\n", " 51,\n", " 53,\n", " 55,\n", " 56,\n", " 57,\n", " 58,\n", " 59,\n", " 60,\n", " 61,\n", " 63,\n", " 64,\n", " 65,\n", " 67,\n", " 68,\n", " 69,\n", " 70,\n", " 71,\n", " 72,\n", " 73,\n", " 74,\n", " 76,\n", " 77,\n", " 78,\n", " 79,\n", " 80,\n", " 81,\n", " 82,\n", " 83,\n", " 84,\n", " 85,\n", " 86,\n", " 87,\n", " 89,\n", " 90,\n", " 91,\n", " 93,\n", " 94,\n", " 95,\n", " 98,\n", " 99,\n", " 100,\n", " 101,\n", " 103,\n", " 104,\n", " 105,\n", " 106,\n", " 107,\n", " 108,\n", " 109,\n", " 111,\n", " 112,\n", " 113,\n", " 114,\n", " 115,\n", " 116,\n", " 117,\n", " 119,\n", " 120,\n", " 121,\n", " 122,\n", " 125,\n", " 126,\n", " 127,\n", " 128,\n", " 129,\n", " 130,\n", " 131,\n", " 132,\n", " 133,\n", " 134,\n", " 135,\n", " 138,\n", " 140,\n", " 141,\n", " 142,\n", " 143,\n", " 144,\n", " 145,\n", " 146,\n", " 147,\n", " 149,\n", " 150,\n", " 152,\n", " 153,\n", " 154,\n", " 155,\n", " 156,\n", " 157,\n", " 158,\n", " 159,\n", " 160,\n", " 161,\n", " 162,\n", " 163,\n", " 164,\n", " 165,\n", " 166,\n", " 167,\n", " 168,\n", " 169,\n", " 171,\n", " 172,\n", " 173,\n", " 175,\n", " 176,\n", " 178,\n", " 179,\n", " 180,\n", " 181,\n", " 182,\n", " 184,\n", " 185,\n", " 186,\n", " 187,\n", " 188,\n", " 189,\n", " 190,\n", " 191,\n", " 192,\n", " 196,\n", " 197,\n", " 198,\n", " 199,\n", " 200,\n", " 201,\n", " 202,\n", " 203,\n", " 204,\n", " 206,\n", " 207,\n", " 208,\n", " 210,\n", " 211,\n", " 212,\n", " 213,\n", " 214,\n", " 216,\n", " 217,\n", " 219,\n", " 220,\n", " 221,\n", " 222,\n", " 223,\n", " 225,\n", " 226,\n", " 227,\n", " 228,\n", " 229,\n", " 231,\n", " 232,\n", " 233,\n", " 234,\n", " 235,\n", " 236,\n", " 237,\n", " 238,\n", " 239,\n", " 240,\n", " 241,\n", " 242,\n", " 243,\n", " 244,\n", " 246,\n", " 247,\n", " 249,\n", " 250,\n", " 253,\n", " 254,\n", " 255,\n", " 256,\n", " 258,\n", " 259,\n", " 260,\n", " 261,\n", " 264,\n", " 265,\n", " 266,\n", " 267,\n", " 270,\n", " 271,\n", " 272,\n", " 274,\n", " 276,\n", " 277,\n", " 278,\n", " 279,\n", " 280,\n", " 281,\n", " 282,\n", " 283,\n", " 284,\n", " 285,\n", " 286,\n", " 287,\n", " 288,\n", " 289,\n", " 290,\n", " 293,\n", " 294,\n", " 295,\n", " 296,\n", " 298,\n", " 300,\n", " 301,\n", " 302,\n", " 303,\n", " 304,\n", " 306,\n", " 308,\n", " 312,\n", " 313,\n", " 314,\n", " 315,\n", " 316,\n", " 317,\n", " 320,\n", " 321,\n", " 322,\n", " 323,\n", " 324,\n", " 326,\n", " 328,\n", " 330,\n", " 333,\n", " 334,\n", " 335,\n", " 338,\n", " 339,\n", " 342,\n", " 343,\n", " 344,\n", " 346,\n", " 347,\n", " 348,\n", " 349,\n", " 350,\n", " 351,\n", " 352,\n", " 353,\n", " 354,\n", " 355,\n", " 357,\n", " 358,\n", " 359,\n", " 360,\n", " 361,\n", " 362,\n", " 363,\n", " 364,\n", " 365,\n", " 367,\n", " 368,\n", " 371,\n", " 372,\n", " 373,\n", " 374,\n", " 375,\n", " 376,\n", " 378,\n", " 379,\n", " 380,\n", " 381,\n", " 382,\n", " 383,\n", " 384,\n", " 385,\n", " 386,\n", " 387,\n", " 388,\n", " 389,\n", " 391,\n", " 392,\n", " 395,\n", " 396,\n", " 397,\n", " 398,\n", " 399,\n", " 400,\n", " 401,\n", " 402,\n", " 403,\n", " 404,\n", " 405,\n", " 406,\n", " 407,\n", " 408,\n", " 409,\n", " 410,\n", " 411,\n", " 413,\n", " 414,\n", " 415,\n", " 416,\n", " 417,\n", " 418,\n", " 419,\n", " 420,\n", " 421,\n", " 422,\n", " 423,\n", " 424,\n", " 425,\n", " 426,\n", " 427,\n", " 428,\n", " 431,\n", " 432,\n", " 433,\n", " 436,\n", " 437,\n", " 439,\n", " 440,\n", " 441,\n", " 442,\n", " 443,\n", " 444,\n", " 446,\n", " 447,\n", " 448,\n", " 450,\n", " 451,\n", " 454,\n", " 455,\n", " 457,\n", " 458,\n", " 459,\n", " 461,\n", " 463,\n", " 464,\n", " 465,\n", " 466,\n", " 467,\n", " 468,\n", " 469,\n", " 470,\n", " 471,\n", " 472,\n", " 474,\n", " 475,\n", " 476,\n", " 477,\n", " 478,\n", " 479,\n", " 480,\n", " 481,\n", " 482,\n", " 483,\n", " 485,\n", " 488,\n", " 489,\n", " 490,\n", " 491,\n", " 493,\n", " 494,\n", " 495,\n", " 497,\n", " 499,\n", " 500,\n", " 501,\n", " 502,\n", " 503,\n", " 506,\n", " 507,\n", " 508,\n", " 509,\n", " 510,\n", " 511,\n", " 513,\n", " 514,\n", " 517,\n", " 518,\n", " 519,\n", " 521,\n", " 522,\n", " 524,\n", " 525,\n", " 526,\n", " 527,\n", " 528,\n", " 529,\n", " 530,\n", " 531,\n", " 532,\n", " 533,\n", " 534,\n", " 535,\n", " 537,\n", " 538,\n", " 541,\n", " 542,\n", " 543,\n", " 545,\n", " 546,\n", " 547,\n", " 548,\n", " 549,\n", " 551,\n", " 552,\n", " 553,\n", " 554,\n", " 555,\n", " 557,\n", " 559,\n", " 560,\n", " 561,\n", " 562,\n", " 563,\n", " 564,\n", " 565,\n", " 566,\n", " 567,\n", " 568,\n", " 569,\n", " 570,\n", " 573,\n", " 574,\n", " 575,\n", " 576,\n", " 578,\n", " 579,\n", " 580,\n", " 582,\n", " 584,\n", " 586,\n", " 588,\n", " 589,\n", " 590,\n", " 592,\n", " 593,\n", " 594,\n", " 595,\n", " 596,\n", " 597,\n", " 598,\n", " 600,\n", " 601,\n", " 602,\n", " 603,\n", " 604,\n", " 605,\n", " 606,\n", " 607,\n", " 608,\n", " 610,\n", " 611,\n", " 612,\n", " 613,\n", " 614,\n", " 615,\n", " 616,\n", " 617,\n", " 619,\n", " 620,\n", " 622,\n", " 623,\n", " 624,\n", " 626,\n", " 628,\n", " 629,\n", " 631,\n", " 633,\n", " 634,\n", " 635,\n", " 636,\n", " 637,\n", " 638,\n", " 639,\n", " 640,\n", " 642,\n", " 643,\n", " 644,\n", " 646,\n", " 648,\n", " 649,\n", " 650,\n", " 651,\n", " 652,\n", " 653,\n", " 654,\n", " 655,\n", " 656,\n", " 657,\n", " 658,\n", " 660,\n", " 661,\n", " 663,\n", " 664,\n", " 665,\n", " 666,\n", " 667,\n", " 668,\n", " 669,\n", " 670,\n", " 672,\n", " 673,\n", " 674,\n", " 675,\n", " 676,\n", " 677,\n", " 678,\n", " 680,\n", " 682,\n", " 683,\n", " 684,\n", " 685,\n", " 686,\n", " 687,\n", " 688,\n", " 691,\n", " 692,\n", " 693,\n", " 694,\n", " 695,\n", " 696,\n", " 697,\n", " 702,\n", " 703,\n", " 704,\n", " 705,\n", " 706,\n", " 708,\n", " 709,\n", " 711,\n", " 713,\n", " 714,\n", " 718,\n", " 719,\n", " 720,\n", " 721,\n", " 722,\n", " 723,\n", " 725,\n", " 726,\n", " 727,\n", " 728,\n", " 729,\n", " 731,\n", " 732,\n", " 733,\n", " 734,\n", " 735,\n", " 736,\n", " 738,\n", " 739,\n", " 740,\n", " 743,\n", " 744,\n", " 746,\n", " 747,\n", " 749,\n", " 750,\n", " 752,\n", " 753,\n", " 754,\n", " 755,\n", " 756,\n", " 757,\n", " 758,\n", " 760,\n", " 761,\n", " 762,\n", " 764,\n", " 766,\n", " 767,\n", " 768,\n", " 769,\n", " 770,\n", " 771,\n", " 773,\n", " 774,\n", " 775,\n", " 776,\n", " 777,\n", " 778,\n", " 780,\n", " 783,\n", " 784,\n", " 785,\n", " 786,\n", " 787,\n", " 788,\n", " 790,\n", " 791,\n", " 792,\n", " 793,\n", " 794,\n", " 795,\n", " 797,\n", " 798,\n", " 799,\n", " 800,\n", " 801,\n", " 803,\n", " 804,\n", " 805,\n", " 807,\n", " 808,\n", " 810,\n", " 811,\n", " 812,\n", " 813,\n", " 814,\n", " 815,\n", " 816,\n", " 817,\n", " 818,\n", " 819,\n", " 821,\n", " 822,\n", " 824,\n", " 825,\n", " 826,\n", " 827,\n", " 828,\n", " 829,\n", " 830,\n", " 831,\n", " 832,\n", " 833,\n", " 834,\n", " 836,\n", " 837,\n", " 838,\n", " 839,\n", " 840,\n", " 841,\n", " 842,\n", " 843,\n", " 844,\n", " 845,\n", " 846,\n", " 847,\n", " 848,\n", " 849,\n", " 850,\n", " 851,\n", " 852,\n", " 854,\n", " 855,\n", " 856,\n", " 858,\n", " 859,\n", " 860,\n", " 861,\n", " 863,\n", " 864,\n", " 865,\n", " 866,\n", " 868,\n", " 869,\n", " 870,\n", " 873,\n", " 874,\n", " 875,\n", " 876,\n", " 877,\n", " 878,\n", " 880,\n", " 881,\n", " 882,\n", " 883,\n", " 884,\n", " 885,\n", " 886,\n", " 888,\n", " 890]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Missing rows\n", "[r for r in df.index if df.loc[r].isna().any()]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "cell_id": "7412b55af3744e06b10941b13ae95f02", "deepnote_cell_height": 365.34375, "deepnote_cell_type": "code", "deepnote_output_heights": [ 232.34375 ], "deepnote_to_be_reexecuted": false, "execution_millis": 1586, "execution_start": 1649822298519, "source_hash": "2802b08", "tags": [] }, "outputs": [ { "data": { "text/plain": [ "5 2\n", "17 2\n", "19 2\n", "26 2\n", "28 2\n", " ..\n", "859 2\n", "863 2\n", "868 2\n", "878 2\n", "888 2\n", "Length: 160, dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#At least 2 missing rows\n", "more_1 = [r for r in df.index if df.loc[r].isna().sum() > 1]\n", "df.loc[more_1].isna().sum(axis = 1)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "cell_id": "28196e6c23624fe18008c6ebdb801c70", "deepnote_cell_height": 618, "deepnote_cell_type": "code", "deepnote_table_loading": false, "deepnote_table_state": { "filters": [], "pageIndex": 0, "pageSize": 10, "sortBy": [] }, "deepnote_to_be_reexecuted": false, "execution_millis": 135, "execution_start": 1649822301017, "source_hash": "a7ea4608", "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maledeckembark_townalivealone
003male22.0107.2500SThirdmanTrueNaNSouthamptonnoFalse
213female26.0007.9250SThirdwomanFalseNaNSouthamptonyesTrue
403male35.0008.0500SThirdmanTrueNaNSouthamptonnoTrue
503maleNaN008.4583QThirdmanTrueNaNQueenstownnoTrue
703male2.03121.0750SThirdchildFalseNaNSouthamptonnoFalse
................................................
88403male25.0007.0500SThirdmanTrueNaNSouthamptonnoTrue
88503female39.00529.1250QThirdwomanFalseNaNQueenstownnoFalse
88602male27.00013.0000SSecondmanTrueNaNSouthamptonnoTrue
88803femaleNaN1223.4500SThirdwomanFalseNaNSouthamptonnoFalse
89003male32.0007.7500QThirdmanTrueNaNQueenstownnoTrue
\n", "

709 rows × 15 columns

\n", "
" ], "text/plain": [ " survived pclass sex age sibsp parch fare embarked class \\\n", "0 0 3 male 22.0 1 0 7.2500 S Third \n", "2 1 3 female 26.0 0 0 7.9250 S Third \n", "4 0 3 male 35.0 0 0 8.0500 S Third \n", "5 0 3 male NaN 0 0 8.4583 Q Third \n", "7 0 3 male 2.0 3 1 21.0750 S Third \n", ".. ... ... ... ... ... ... ... ... ... \n", "884 0 3 male 25.0 0 0 7.0500 S Third \n", "885 0 3 female 39.0 0 5 29.1250 Q Third \n", "886 0 2 male 27.0 0 0 13.0000 S Second \n", "888 0 3 female NaN 1 2 23.4500 S Third \n", "890 0 3 male 32.0 0 0 7.7500 Q Third \n", "\n", " who adult_male deck embark_town alive alone \n", "0 man True NaN Southampton no False \n", "2 woman False NaN Southampton yes True \n", "4 man True NaN Southampton no True \n", "5 man True NaN Queenstown no True \n", "7 child False NaN Southampton no False \n", ".. ... ... ... ... ... ... \n", "884 man True NaN Southampton no True \n", "885 woman False NaN Queenstown no False \n", "886 man True NaN Southampton no True \n", "888 woman False NaN Southampton no False \n", "890 man True NaN Queenstown no True \n", "\n", "[709 rows x 15 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Missing sub-DataFrame\n", "df.loc[[r for r in df.index if df.loc[r].isna().any()]]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "cell_id": "4a904aedb1334d6f97f1c884c69b2d4e", "deepnote_cell_height": 636, "deepnote_cell_type": "code", "deepnote_table_loading": false, "deepnote_table_state": { "filters": [], "pageIndex": 0, "pageSize": 10, "sortBy": [] }, "deepnote_to_be_reexecuted": false, "execution_millis": 809, "execution_start": 1649822301200, "source_hash": "581f2c3a", "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maledeckembark_townalivealone
003male22.0107.2500SThirdmanTrueNaNSouthamptonnoFalse
213female26.0007.9250SThirdwomanFalseNaNSouthamptonyesTrue
403male35.0008.0500SThirdmanTrueNaNSouthamptonnoTrue
703male2.03121.0750SThirdchildFalseNaNSouthamptonnoFalse
813female27.00211.1333SThirdwomanFalseNaNSouthamptonyesFalse
................................................
88203female22.00010.5167SThirdwomanFalseNaNSouthamptonnoTrue
88302male28.00010.5000SSecondmanTrueNaNSouthamptonnoTrue
88403male25.0007.0500SThirdmanTrueNaNSouthamptonnoTrue
88602male27.00013.0000SSecondmanTrueNaNSouthamptonnoTrue
88803femaleNaN1223.4500SThirdwomanFalseNaNSouthamptonnoFalse
\n", "

529 rows × 15 columns

\n", "
" ], "text/plain": [ " survived pclass sex age sibsp parch fare embarked class \\\n", "0 0 3 male 22.0 1 0 7.2500 S Third \n", "2 1 3 female 26.0 0 0 7.9250 S Third \n", "4 0 3 male 35.0 0 0 8.0500 S Third \n", "7 0 3 male 2.0 3 1 21.0750 S Third \n", "8 1 3 female 27.0 0 2 11.1333 S Third \n", ".. ... ... ... ... ... ... ... ... ... \n", "882 0 3 female 22.0 0 0 10.5167 S Third \n", "883 0 2 male 28.0 0 0 10.5000 S Second \n", "884 0 3 male 25.0 0 0 7.0500 S Third \n", "886 0 2 male 27.0 0 0 13.0000 S Second \n", "888 0 3 female NaN 1 2 23.4500 S Third \n", "\n", " who adult_male deck embark_town alive alone \n", "0 man True NaN Southampton no False \n", "2 woman False NaN Southampton yes True \n", "4 man True NaN Southampton no True \n", "7 child False NaN Southampton no False \n", "8 woman False NaN Southampton yes False \n", ".. ... ... ... ... ... ... \n", "882 woman False NaN Southampton no True \n", "883 man True NaN Southampton no True \n", "884 man True NaN Southampton no True \n", "886 man True NaN Southampton no True \n", "888 woman False NaN Southampton no False \n", "\n", "[529 rows x 15 columns]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Missing + embark_town\n", "df.loc[[r for r in df.index if df.loc[r].isna().any() and df.loc[r,\"embark_town\"] == \"Southampton\"]]\n" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "97be3f244cfd421a9a065f5caa7fb645", "deepnote_cell_height": 125.1875, "deepnote_cell_type": "markdown", "tags": [] }, "source": [ "__Question 2__:\n", " - Consider the following Altair chart. Explain how you could use it to determine where `parch` is the largest and how many different unique `embark_town` values there are." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "cell_id": "138a87757c3747d9a948f58ff0b7e096", "deepnote_cell_height": 561, "deepnote_cell_type": "code", "deepnote_output_heights": [ 356 ], "deepnote_to_be_reexecuted": false, "execution_millis": 693, "execution_start": 1649822302014, "source_hash": "f0c30795", "tags": [] }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "" ], "text/plain": [ "alt.Chart(...)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import altair as alt\n", "alt.Chart(df[df[\"age\"] < 20]).mark_circle().encode(\n", " x = alt.X(\"age\"),\n", " y = alt.Y(\"fare\"),\n", " color = alt.Color(\"embark_town\", legend = None),\n", " size = alt.Size(\"parch\", legend = None)\n", ")" ] } ], "metadata": { "deepnote": { "is_reactive": false }, "deepnote_execution_queue": [], "deepnote_notebook_id": "07c21ad4-e00a-4c16-b3ac-49e409fb13d3", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" } }, "nbformat": 4, "nbformat_minor": 4 }