Tesla Stock Price Prediction
Contents
Tesla Stock Price Prediction¶
Author: Xiangyi Zhu
Course Project, UC Irvine, Math 10, S22
Introduction¶
Introduce your project here. Maybe 3 sentences.
The stock market is very volatila, but with a large amount of data, we are able to find some trend. In the project, I imported the data of the stock price of Tesla from 2011 to 2017. In the project, I aim to use linear regression and K_Neatest neighbor to predict the future stock price and see whether the methods work for the volatila market. Also, I aim to see whether we can use the prediction to make the correct decision on trading.
Main portion of the project¶
(You can either have all one section or divide into multiple sections)
Section1: Read and Organize the Dataset¶
import pandas as pd
df=pd.read_csv("Tesla.csv").dropna()
df.head()
Date | Open | High | Low | Close | Volume | Adj Close | |
---|---|---|---|---|---|---|---|
0 | 6/29/2010 | 19.000000 | 25.00 | 17.540001 | 23.889999 | 18766300 | 23.889999 |
1 | 6/30/2010 | 25.790001 | 30.42 | 23.299999 | 23.830000 | 17187100 | 23.830000 |
2 | 7/1/2010 | 25.000000 | 25.92 | 20.270000 | 21.959999 | 8218800 | 21.959999 |
3 | 7/2/2010 | 23.000000 | 23.10 | 18.709999 | 19.200001 | 5139800 | 19.200001 |
4 | 7/6/2010 | 20.000000 | 20.00 | 15.830000 | 16.110001 | 6866900 | 16.110001 |
df["Date"]=pd.to_datetime(df["Date"])
Create new columns in the dataframe which will be used in the following section
# the column contain the difference between high price and open price
df["Diff_high"]=df["High"]-df["Open"]
# the column contain the difference between low price and open price
df["Diff_low"]=df["Open"]-df["Low"]
# if the stock is worthing trading, the value is 1, otherwise the value is 0
df["Trade"]=df["Close"]-df["Open"]
df["Worth"]=0
for n in df.index:
if df.loc[n,"Trade"]>=0:
df.loc[n,"Worth"]=1
df.head()
Date | Open | High | Low | Close | Volume | Adj Close | Diff_high | Diff_low | Trade | Worth | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2010-06-29 | 19.000000 | 25.00 | 17.540001 | 23.889999 | 18766300 | 23.889999 | 6.000000 | 1.459999 | 4.889999 | 1 |
1 | 2010-06-30 | 25.790001 | 30.42 | 23.299999 | 23.830000 | 17187100 | 23.830000 | 4.629999 | 2.490002 | -1.960001 | 0 |
2 | 2010-07-01 | 25.000000 | 25.92 | 20.270000 | 21.959999 | 8218800 | 21.959999 | 0.920000 | 4.730000 | -3.040001 | 0 |
3 | 2010-07-02 | 23.000000 | 23.10 | 18.709999 | 19.200001 | 5139800 | 19.200001 | 0.100000 | 4.290001 | -3.799999 | 0 |
4 | 2010-07-06 | 20.000000 | 20.00 | 15.830000 | 16.110001 | 6866900 | 16.110001 | 0.000000 | 4.170000 | -3.889999 | 0 |
In order to predict the stock price, we need to first analyze the original data. Close price is the last price at which a security traded during the regular trading day is the standard benchmark used by investors to track its performance over time. So, we will first use chart to see the change of close over time.
import altair as alt
type(df["Close"])
pandas.core.series.Series
interval = alt.selection_interval()
big = alt.Chart(df).mark_line().encode(
x="Date",
y="Close",
tooltip=["Date","Close"]
).add_selection(
interval
)
small = alt.Chart(df).mark_line().encode(
x="Date",
y="Close"
).transform_filter(
interval
)
big|small
Section2: Linear Regression¶
I plan to use the data in 2013 and 2014 to be the train data to predict the stock price after 2014 using linear regression to check the accuracy.
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
# get the rows that contain the stock price in 2013 and 2014
train_index=[x for x in df.index if df.loc[x,"Date"].year==2013 or df.loc[x,"Date"].year==2014]
# create the sub dataframe that only contain the stock price of 2013 and 2014
df_train=df.loc[train_index]
I plan to use the value of open price, the highest price, and the lowest price to predict the close price. So, I create the train data to contain the columns of “Open”, “High”, and “Low”.
# create the train data
X_train=df_train[["Open","High","Low"]]
# the true value of close price in 2013 and 2014
y_train=df_train["Close"]
# train the data
reg.fit(X_train, y_train)
LinearRegression()
df_train["Pred"]=reg.predict(X_train)
Then, I plan to compare the precited close value for the year of 2015 and the true close value of 2015
# get the rows that contain the stock price in 2015
test_index=[x for x in df.index if df.loc[x,"Date"].year==2015]
# create the sub dataframe that only contain the stock price in 2015
df_test=df.loc[test_index]
X_test=df_test[["Open","High","Low"]]
y_test=df_test["Close"]
df_test["Pred"]=reg.predict(X_test)
# visualize the close price for 2015
c_true=alt.Chart(df_test).mark_line().encode(
x="Date",
y=alt.Y("Close", scale=alt.Scale(domain = [150,300])),
tooltip=["Date","Close"]
)
c_true.properties(title = "Close Price for 2015")
# visualize the predicted close price for 2015
c_pred=alt.Chart(df_test).mark_line().encode(
x="Date",
y=alt.Y("Pred", scale=alt.Scale(domain = [150,300])),
tooltip=["Date","Pred"],
color=alt.value("#FFAA00"),
)
c_pred.properties(title = "Predicted Close Price for 2015")
df_test["difference"]=abs(df_test["Close"]-df_test["Open"])
In the end, I put the two graphs together to make a more direct comparision between the true price and predicted price.
c_together=c_true+c_pred
c_together=c_together.add_selection(
interval
)
difference = alt.Chart(df_test).mark_line().encode(
x="Date",
y="difference"
).transform_filter(
interval
)
c_together|difference
We can see from the chart that the true value of the close price and the predicted close is vary close since the two lines overlap each other a lot. Also, most of the difference is below 14, which is small compared the true close price, which value is between 150-200. But we will then use mean value error to evaluate the performance.
from sklearn.metrics import mean_squared_error
mean_squared_error(df_test["Close"],df_test["Pred"])
3.5567349637513797
mean_squared_error(df_train["Close"],df_train["Pred"])
3.2347263243425592
The mean suqared error again shows that the well performance since the MSE for the train data is less than the MSE for the test data and they are very close.
Section3 K – Nearest Neighbor (KNN) Classification¶
In the section, I aim to use the difference between open price and high price, and the difference between open price and low price to classify stock into two categories: one is worth trading, which means the close price is higher than open price, and another is do not worth trade, which means the close price is lower than open price.
Similarly, I will use the data of 2013 and 2014 to predict the data of 2015
from sklearn.neighbors import KNeighborsClassifier
# create the train data
X_train2=df_train[["Diff_high","Diff_low"]]
# the true value of close price in 2013 and 2014
y_train2=df_train["Worth"]
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train2, y_train2)
KNeighborsClassifier()
# the test data contains the stock price in 2015
X_test2=df_test[["Diff_high","Diff_low"]]
y_test2=df_test["Worth"]
df_test.head()
Date | Open | High | Low | Close | Volume | Adj Close | Diff_high | Diff_low | Trade | Worth | Pred | difference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1136 | 2015-01-02 | 222.869995 | 223.250000 | 213.259995 | 219.309998 | 4764400 | 219.309998 | 0.380005 | 9.610000 | -3.559997 | 0 | 215.748410 | 3.559997 |
1137 | 2015-01-05 | 214.550003 | 216.500000 | 207.160004 | 210.089996 | 5368500 | 210.089996 | 1.949997 | 7.389999 | -4.460007 | 0 | 210.402004 | 4.460007 |
1138 | 2015-01-06 | 210.059998 | 214.199997 | 204.210007 | 211.279999 | 6261900 | 211.279999 | 4.139999 | 5.849991 | 1.220001 | 1 | 208.881669 | 1.220001 |
1139 | 2015-01-07 | 213.350006 | 214.779999 | 209.779999 | 210.949997 | 2968400 | 210.949997 | 1.429993 | 3.570007 | -2.400009 | 0 | 211.647192 | 2.400009 |
1140 | 2015-01-08 | 212.809998 | 213.800003 | 210.009995 | 210.619995 | 3442500 | 210.619995 | 0.990005 | 2.800003 | -2.190003 | 0 | 211.323862 | 2.190003 |
df_test["Pred2"] = classifier.predict(X_test2)
In order to better visualize whether the stock is worth trading, I hightlight the value that is 1, which means worth trading.
df_test.style.highlight_max(color = 'lightgreen', axis = 0)
Date | Open | High | Low | Close | Volume | Adj Close | Diff_high | Diff_low | Trade | Worth | Pred | difference | Pred2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1136 | 2015-01-02 00:00:00 | 222.869995 | 223.250000 | 213.259995 | 219.309998 | 4764400 | 219.309998 | 0.380005 | 9.610000 | -3.559997 | 0 | 215.748410 | 3.559997 | 0 |
1137 | 2015-01-05 00:00:00 | 214.550003 | 216.500000 | 207.160004 | 210.089996 | 5368500 | 210.089996 | 1.949997 | 7.389999 | -4.460007 | 0 | 210.402004 | 4.460007 | 0 |
1138 | 2015-01-06 00:00:00 | 210.059998 | 214.199997 | 204.210007 | 211.279999 | 6261900 | 211.279999 | 4.139999 | 5.849991 | 1.220001 | 1 | 208.881669 | 1.220001 | 0 |
1139 | 2015-01-07 00:00:00 | 213.350006 | 214.779999 | 209.779999 | 210.949997 | 2968400 | 210.949997 | 1.429993 | 3.570007 | -2.400009 | 0 | 211.647192 | 2.400009 | 0 |
1140 | 2015-01-08 00:00:00 | 212.809998 | 213.800003 | 210.009995 | 210.619995 | 3442500 | 210.619995 | 0.990005 | 2.800003 | -2.190003 | 0 | 211.323862 | 2.190003 | 0 |
1141 | 2015-01-09 00:00:00 | 208.919998 | 209.979996 | 204.960007 | 206.660004 | 4668300 | 206.660004 | 1.059998 | 3.959991 | -2.259994 | 0 | 206.623287 | 2.259994 | 0 |
1142 | 2015-01-12 00:00:00 | 203.050003 | 204.470001 | 199.250000 | 202.210007 | 5950300 | 202.210007 | 1.419998 | 3.800003 | -0.839996 | 0 | 201.176774 | 0.839996 | 0 |
1143 | 2015-01-13 00:00:00 | 203.320007 | 207.610001 | 200.910004 | 204.250000 | 4477300 | 204.250000 | 4.289994 | 2.410003 | 0.929993 | 1 | 204.859632 | 0.929993 | 0 |
1144 | 2015-01-14 00:00:00 | 185.830002 | 195.199997 | 185.000000 | 192.690002 | 11513900 | 192.690002 | 9.369995 | 0.830002 | 6.860000 | 1 | 192.767266 | 6.860000 | 1 |
1145 | 2015-01-15 00:00:00 | 194.490005 | 195.750000 | 190.000000 | 191.869995 | 5216500 | 191.869995 | 1.259995 | 4.490005 | -2.620010 | 0 | 191.974819 | 2.620010 | 0 |
1146 | 2015-01-16 00:00:00 | 190.699997 | 194.490005 | 189.649994 | 193.070007 | 3603200 | 193.070007 | 3.790008 | 1.050003 | 2.370010 | 1 | 192.863198 | 2.370010 | 1 |
1147 | 2015-01-20 00:00:00 | 193.869995 | 194.119995 | 187.039993 | 191.929993 | 4503200 | 191.929993 | 0.250000 | 6.830002 | -1.940002 | 0 | 188.762353 | 1.940002 | 0 |
1148 | 2015-01-21 00:00:00 | 189.550003 | 198.679993 | 189.509995 | 196.570007 | 4153000 | 196.570007 | 9.129990 | 0.040008 | 7.020004 | 1 | 196.879497 | 7.020004 | 1 |
1149 | 2015-01-22 00:00:00 | 197.000000 | 203.240005 | 195.199997 | 201.619995 | 4116900 | 201.619995 | 6.240005 | 1.800003 | 4.619995 | 1 | 200.613784 | 4.619995 | 1 |
1150 | 2015-01-23 00:00:00 | 200.289993 | 203.500000 | 198.330002 | 201.289993 | 3438600 | 201.289993 | 3.210007 | 1.959991 | 1.000000 | 1 | 201.280250 | 1.000000 | 1 |
1151 | 2015-01-26 00:00:00 | 201.830002 | 208.619995 | 201.050003 | 206.550003 | 3234500 | 206.550003 | 6.789993 | 0.779999 | 4.720001 | 1 | 206.659582 | 4.720001 | 1 |
1152 | 2015-01-27 00:00:00 | 204.419998 | 208.029999 | 203.300003 | 205.979996 | 2781000 | 205.979996 | 3.610001 | 1.119995 | 1.559998 | 1 | 206.367660 | 1.559998 | 1 |
1153 | 2015-01-28 00:00:00 | 206.110001 | 206.369995 | 198.419998 | 199.369995 | 3149600 | 199.369995 | 0.259994 | 7.690003 | -6.740006 | 0 | 200.350976 | 6.740006 | 0 |
1154 | 2015-01-29 00:00:00 | 201.070007 | 205.979996 | 196.500000 | 205.199997 | 3548100 | 205.199997 | 4.909989 | 4.570007 | 4.129990 | 1 | 201.498999 | 4.129990 | 1 |
1155 | 2015-01-30 00:00:00 | 203.960007 | 207.470001 | 203.000000 | 203.600006 | 3007000 | 203.600006 | 3.509994 | 0.960007 | -0.360001 | 0 | 205.945969 | 0.360001 | 1 |
1156 | 2015-02-02 00:00:00 | 203.970001 | 211.949997 | 203.300003 | 210.940002 | 4149200 | 210.940002 | 7.979996 | 0.669998 | 6.970001 | 1 | 209.861819 | 6.970001 | 1 |
1157 | 2015-02-03 00:00:00 | 213.220001 | 220.369995 | 211.270004 | 218.360001 | 4826200 | 218.360001 | 7.149994 | 1.949997 | 5.140000 | 1 | 217.454704 | 5.140000 | 1 |
1158 | 2015-02-04 00:00:00 | 218.289993 | 221.479996 | 216.800003 | 218.550003 | 3305400 | 218.550003 | 3.190003 | 1.489990 | 0.260010 | 1 | 219.598340 | 0.260010 | 1 |
1159 | 2015-02-05 00:00:00 | 219.880005 | 225.479996 | 219.639999 | 220.990005 | 3522900 | 220.990005 | 5.599991 | 0.240006 | 1.110000 | 1 | 224.115012 | 1.110000 | 1 |
1160 | 2015-02-06 00:00:00 | 222.000000 | 223.399994 | 216.500000 | 217.360001 | 3243900 | 217.360001 | 1.399994 | 5.500000 | -4.639999 | 0 | 218.811858 | 4.639999 | 0 |
1161 | 2015-02-09 00:00:00 | 215.380005 | 217.929993 | 211.990005 | 217.479996 | 3472400 | 217.479996 | 2.549988 | 3.390000 | 2.099991 | 1 | 214.734437 | 2.099991 | 1 |
1162 | 2015-02-10 00:00:00 | 217.550003 | 220.500000 | 215.000000 | 216.289993 | 5390500 | 216.289993 | 2.949997 | 2.550003 | -1.260010 | 0 | 217.863910 | 1.260010 | 1 |
1163 | 2015-02-11 00:00:00 | 212.210007 | 214.740005 | 207.279999 | 212.800003 | 9769100 | 212.800003 | 2.529998 | 4.930008 | 0.589996 | 1 | 210.393068 | 0.589996 | 1 |
1164 | 2015-02-12 00:00:00 | 193.570007 | 203.089996 | 193.279999 | 202.880005 | 15649600 | 202.880005 | 9.519989 | 0.290008 | 9.309998 | 1 | 201.029014 | 9.309998 | 1 |
1165 | 2015-02-13 00:00:00 | 202.899994 | 205.990005 | 200.910004 | 203.770004 | 6191000 | 203.770004 | 3.090011 | 1.989990 | 0.870010 | 1 | 203.765955 | 0.870010 | 1 |
1166 | 2015-02-17 00:00:00 | 205.699997 | 205.699997 | 201.500000 | 204.350006 | 3979600 | 204.350006 | 0.000000 | 4.199997 | -1.349991 | 0 | 202.351661 | 1.349991 | 0 |
1167 | 2015-02-18 00:00:00 | 204.169998 | 206.169998 | 202.600006 | 204.460007 | 2713600 | 204.460007 | 2.000000 | 1.569992 | 0.290009 | 1 | 204.451237 | 0.290009 | 0 |
1168 | 2015-02-19 00:00:00 | 205.000000 | 212.440002 | 203.750000 | 211.710007 | 5154100 | 211.710007 | 7.440002 | 1.250000 | 6.710007 | 1 | 210.009035 | 6.710007 | 1 |
1169 | 2015-02-20 00:00:00 | 210.779999 | 217.600006 | 209.809998 | 217.110001 | 5982100 | 217.110001 | 6.820007 | 0.970001 | 6.330002 | 1 | 215.482055 | 6.330002 | 1 |
1170 | 2015-02-23 00:00:00 | 215.660004 | 218.199997 | 206.330002 | 207.339996 | 8499800 | 207.339996 | 2.539993 | 9.330002 | -8.320008 | 0 | 210.538556 | 8.320008 | 0 |
1171 | 2015-02-24 00:00:00 | 207.289993 | 207.289993 | 201.699997 | 204.110001 | 6603600 | 204.110001 | 0.000000 | 5.589996 | -3.179992 | 0 | 202.894602 | 3.179992 | 0 |
1172 | 2015-02-25 00:00:00 | 204.940002 | 207.139999 | 202.580002 | 203.759995 | 3909500 | 203.759995 | 2.199997 | 2.360000 | -1.180007 | 0 | 204.791284 | 1.180007 | 0 |
1173 | 2015-02-26 00:00:00 | 204.000000 | 211.089996 | 202.220001 | 207.190002 | 6472900 | 207.190002 | 7.089996 | 1.779999 | 3.190002 | 1 | 208.322729 | 3.190002 | 1 |
1174 | 2015-02-27 00:00:00 | 206.899994 | 208.550003 | 202.800003 | 203.339996 | 3882100 | 203.339996 | 1.650009 | 4.099991 | -3.559998 | 0 | 204.986871 | 3.559998 | 0 |
1175 | 2015-03-02 00:00:00 | 202.699997 | 203.339996 | 195.830002 | 197.330002 | 7922100 | 197.330002 | 0.639999 | 6.869995 | -5.369995 | 0 | 197.874763 | 5.369995 | 0 |
1176 | 2015-03-03 00:00:00 | 196.809998 | 200.240005 | 195.320007 | 199.559998 | 4432300 | 199.559998 | 3.430007 | 1.489991 | 2.750000 | 1 | 198.338883 | 2.750000 | 1 |
1177 | 2015-03-04 00:00:00 | 199.250000 | 202.520004 | 197.210007 | 202.440002 | 4222000 | 202.440002 | 3.270004 | 2.039993 | 3.190002 | 1 | 200.230678 | 3.190002 | 1 |
1178 | 2015-03-05 00:00:00 | 202.850006 | 206.190002 | 200.149994 | 200.630005 | 4877000 | 200.630005 | 3.339996 | 2.700012 | -2.220001 | 0 | 203.388266 | 2.220001 | 0 |
1179 | 2015-03-06 00:00:00 | 199.210007 | 200.750000 | 192.149994 | 193.880005 | 6712400 | 193.880005 | 1.539993 | 7.060013 | -5.330002 | 0 | 194.988023 | 5.330002 | 0 |
1180 | 2015-03-09 00:00:00 | 194.389999 | 194.490005 | 188.250000 | 190.880005 | 6736700 | 190.880005 | 0.100006 | 6.139999 | -3.509994 | 0 | 189.677002 | 3.509994 | 0 |
1181 | 2015-03-10 00:00:00 | 188.460007 | 193.500000 | 187.600006 | 190.320007 | 5579700 | 190.320007 | 5.039993 | 0.860001 | 1.860000 | 1 | 191.799694 | 1.860000 | 1 |
1182 | 2015-03-11 00:00:00 | 191.149994 | 196.179993 | 191.009995 | 193.740005 | 4974900 | 193.740005 | 5.029999 | 0.139999 | 2.590011 | 1 | 195.020111 | 2.590011 | 1 |
1183 | 2015-03-12 00:00:00 | 193.750000 | 194.449997 | 189.750000 | 191.070007 | 4149300 | 191.070007 | 0.699997 | 4.000000 | -2.679993 | 0 | 191.142113 | 2.679993 | 0 |
1184 | 2015-03-13 00:00:00 | 188.949997 | 191.750000 | 187.320007 | 188.679993 | 5434300 | 188.679993 | 2.800003 | 1.629990 | -0.270004 | 0 | 189.862084 | 0.270004 | 1 |
1185 | 2015-03-16 00:00:00 | 192.000000 | 195.910004 | 189.800003 | 195.699997 | 5628800 | 195.699997 | 3.910004 | 2.199997 | 3.699997 | 1 | 193.395950 | 3.699997 | 0 |
1186 | 2015-03-17 00:00:00 | 195.429993 | 198.710007 | 193.940002 | 194.729996 | 4894100 | 194.729996 | 3.280014 | 1.489991 | -0.699997 | 0 | 196.836581 | 0.699997 | 1 |
1187 | 2015-03-18 00:00:00 | 194.960007 | 200.880005 | 193.110001 | 200.710007 | 4820900 | 200.710007 | 5.919998 | 1.850006 | 5.750000 | 1 | 198.274319 | 5.750000 | 1 |
1188 | 2015-03-19 00:00:00 | 202.000000 | 204.589996 | 194.529999 | 195.649994 | 8475200 | 195.649994 | 2.589996 | 7.470001 | -6.350006 | 0 | 198.333000 | 6.350006 | 0 |
1189 | 2015-03-20 00:00:00 | 197.449997 | 198.990005 | 195.619995 | 198.080002 | 4269500 | 198.080002 | 1.540008 | 1.830002 | 0.630005 | 1 | 197.163245 | 0.630005 | 0 |
1190 | 2015-03-23 00:00:00 | 198.500000 | 200.500000 | 197.470001 | 199.630005 | 2631600 | 199.630005 | 2.000000 | 1.029999 | 1.130005 | 1 | 199.193304 | 1.130005 | 1 |
1191 | 2015-03-24 00:00:00 | 201.580002 | 203.789993 | 199.750000 | 201.720001 | 3649900 | 201.720001 | 2.209991 | 1.830002 | 0.139999 | 1 | 201.841653 | 0.139999 | 1 |
1192 | 2015-03-25 00:00:00 | 198.270004 | 198.589996 | 192.699997 | 194.300003 | 5730400 | 194.300003 | 0.319992 | 5.570007 | -3.970001 | 0 | 194.163103 | 3.970001 | 0 |
1193 | 2015-03-26 00:00:00 | 193.919998 | 194.789993 | 189.699997 | 190.410004 | 4128000 | 190.410004 | 0.869995 | 4.220001 | -3.509994 | 0 | 191.286723 | 3.509994 | 0 |
1194 | 2015-03-27 00:00:00 | 189.070007 | 189.289993 | 181.399994 | 185.000000 | 8604900 | 185.000000 | 0.219986 | 7.670013 | -4.070007 | 0 | 183.310886 | 4.070007 | 0 |
1195 | 2015-03-30 00:00:00 | 185.850006 | 192.250000 | 181.800003 | 190.570007 | 10089500 | 190.570007 | 6.399994 | 4.050003 | 4.720001 | 1 | 187.915305 | 4.720001 | 1 |
1196 | 2015-03-31 00:00:00 | 193.529999 | 193.759995 | 188.410004 | 188.770004 | 5026600 | 188.770004 | 0.229996 | 5.119995 | -4.759995 | 0 | 189.692268 | 4.759995 | 0 |
1197 | 2015-04-01 00:00:00 | 188.699997 | 192.300003 | 186.050003 | 187.589996 | 3794600 | 187.589996 | 3.600006 | 2.649994 | -1.110001 | 0 | 189.505228 | 1.110001 | 0 |
1198 | 2015-04-02 00:00:00 | 190.229996 | 193.229996 | 190.000000 | 191.000000 | 5010400 | 191.000000 | 3.000000 | 0.229996 | 0.770004 | 1 | 192.358642 | 0.770004 | 1 |
1199 | 2015-04-06 00:00:00 | 198.000000 | 207.750000 | 197.500000 | 203.100006 | 12455800 | 203.100006 | 9.750000 | 0.500000 | 5.100006 | 1 | 205.486188 | 5.100006 | 1 |
1200 | 2015-04-07 00:00:00 | 202.509995 | 205.059998 | 201.139999 | 203.250000 | 4347900 | 203.250000 | 2.550003 | 1.369996 | 0.740005 | 1 | 203.397141 | 0.740005 | 1 |
1201 | 2015-04-08 00:00:00 | 208.199997 | 210.899994 | 205.869995 | 207.669998 | 6303100 | 207.669998 | 2.699997 | 2.330002 | -0.529999 | 0 | 208.482920 | 0.529999 | 1 |
1202 | 2015-04-09 00:00:00 | 208.429993 | 210.369995 | 206.119995 | 210.089996 | 3800200 | 210.089996 | 1.940002 | 2.309998 | 1.660003 | 1 | 208.100723 | 1.660003 | 0 |
1203 | 2015-04-10 00:00:00 | 209.850006 | 211.649994 | 209.000000 | 210.899994 | 4067700 | 210.899994 | 1.799988 | 0.850006 | 1.049988 | 1 | 210.501761 | 1.049988 | 1 |
1204 | 2015-04-13 00:00:00 | 210.440002 | 213.000000 | 209.050003 | 209.779999 | 3758200 | 209.779999 | 2.559998 | 1.389999 | -0.660003 | 0 | 211.312031 | 0.660003 | 1 |
1205 | 2015-04-14 00:00:00 | 208.570007 | 209.490005 | 205.500000 | 207.460007 | 3026000 | 207.460007 | 0.919998 | 3.070007 | -1.110000 | 0 | 206.827500 | 1.110000 | 0 |
1206 | 2015-04-15 00:00:00 | 207.460007 | 209.589996 | 206.600006 | 207.830002 | 1952400 | 207.830002 | 2.129989 | 0.860001 | 0.369995 | 1 | 208.379004 | 0.369995 | 1 |
1207 | 2015-04-16 00:00:00 | 207.699997 | 209.169998 | 206.289993 | 206.699997 | 1659100 | 206.699997 | 1.470001 | 1.410004 | -1.000000 | 0 | 207.660606 | 1.000000 | 0 |
1208 | 2015-04-17 00:00:00 | 204.990005 | 206.880005 | 203.500000 | 206.789993 | 2469900 | 206.789993 | 1.890000 | 1.490005 | 1.799988 | 1 | 205.239790 | 1.799988 | 0 |
1209 | 2015-04-20 00:00:00 | 206.779999 | 207.850006 | 203.850006 | 205.270004 | 2559300 | 205.270004 | 1.070007 | 2.929993 | -1.509995 | 0 | 205.268429 | 1.509995 | 0 |
1210 | 2015-04-21 00:00:00 | 205.800003 | 210.750000 | 204.309998 | 209.410004 | 3432500 | 209.410004 | 4.949997 | 1.490005 | 3.610001 | 1 | 208.573440 | 3.610001 | 1 |
1211 | 2015-04-22 00:00:00 | 212.500000 | 221.880005 | 211.690002 | 219.440002 | 7863000 | 219.440002 | 9.380005 | 0.809998 | 6.940002 | 1 | 219.432587 | 6.940002 | 1 |
1212 | 2015-04-23 00:00:00 | 218.270004 | 221.479996 | 217.149994 | 218.600006 | 4411200 | 218.600006 | 3.209992 | 1.120010 | 0.330002 | 1 | 219.873117 | 0.330002 | 1 |
1213 | 2015-04-24 00:00:00 | 220.500000 | 220.800003 | 218.009995 | 218.429993 | 2427800 | 218.429993 | 0.300003 | 2.490005 | -2.070007 | 0 | 218.669687 | 2.070007 | 0 |
1214 | 2015-04-27 00:00:00 | 222.559998 | 238.750000 | 222.000000 | 231.550003 | 11672600 | 231.550003 | 16.190002 | 0.559998 | 8.990005 | 1 | 235.288306 | 8.990005 | 1 |
1215 | 2015-04-28 00:00:00 | 234.750000 | 235.500000 | 228.029999 | 230.479996 | 6085400 | 230.479996 | 0.750000 | 6.720001 | -4.270004 | 0 | 230.094700 | 4.270004 | 0 |
1216 | 2015-04-29 00:00:00 | 230.050003 | 234.970001 | 227.630005 | 232.449997 | 3936100 | 232.449997 | 4.919998 | 2.419998 | 2.399994 | 1 | 232.073823 | 2.399994 | 1 |
1217 | 2015-04-30 00:00:00 | 230.389999 | 232.889999 | 225.169998 | 226.050003 | 3911900 | 226.050003 | 2.500000 | 5.220001 | -4.339996 | 0 | 228.311142 | 4.339996 | 0 |
1218 | 2015-05-01 00:00:00 | 229.940002 | 231.770004 | 220.410004 | 226.029999 | 5281700 | 226.029999 | 1.830002 | 9.529998 | -3.910003 | 0 | 224.067416 | 3.910003 | 0 |
1219 | 2015-05-04 00:00:00 | 228.179993 | 234.729996 | 227.110001 | 230.509995 | 4434600 | 230.509995 | 6.550003 | 1.069992 | 2.330002 | 1 | 232.565839 | 2.330002 | 1 |
1220 | 2015-05-05 00:00:00 | 237.759995 | 239.500000 | 229.130005 | 232.949997 | 5796900 | 232.949997 | 1.740005 | 8.629990 | -4.809998 | 0 | 232.481833 | 4.809998 | 0 |
1221 | 2015-05-06 00:00:00 | 234.100006 | 234.470001 | 228.199997 | 230.429993 | 5270900 | 230.429993 | 0.369995 | 5.900009 | -3.670013 | 0 | 229.748581 | 3.670013 | 0 |
1222 | 2015-05-07 00:00:00 | 221.000000 | 237.479996 | 220.250000 | 236.800003 | 9455900 | 236.800003 | 16.479996 | 0.750000 | 15.800003 | 1 | 233.826294 | 15.800003 | 1 |
1223 | 2015-05-08 00:00:00 | 235.990005 | 238.410004 | 233.699997 | 236.610001 | 4668200 | 236.610001 | 2.419999 | 2.290008 | 0.619996 | 1 | 236.042853 | 0.619996 | 0 |
1224 | 2015-05-11 00:00:00 | 236.289993 | 242.880005 | 235.309998 | 239.490005 | 5672300 | 239.490005 | 6.590012 | 0.979995 | 3.200012 | 1 | 240.768023 | 3.200012 | 1 |
1225 | 2015-05-12 00:00:00 | 240.110001 | 246.350006 | 238.190002 | 244.740005 | 6363400 | 244.740005 | 6.240005 | 1.919999 | 4.630004 | 1 | 243.588312 | 4.630004 | 1 |
1226 | 2015-05-13 00:00:00 | 247.610001 | 248.300003 | 242.250000 | 243.179993 | 5440200 | 243.179993 | 0.690002 | 5.360001 | -4.430008 | 0 | 243.914537 | 4.430008 | 0 |
1227 | 2015-05-14 00:00:00 | 244.820007 | 244.889999 | 241.250000 | 244.100006 | 2895900 | 244.100006 | 0.069992 | 3.570007 | -0.720001 | 0 | 241.962175 | 0.720001 | 0 |
1228 | 2015-05-15 00:00:00 | 243.929993 | 249.399994 | 242.500000 | 248.839996 | 4527600 | 248.839996 | 5.470001 | 1.429993 | 4.910003 | 1 | 247.137564 | 4.910003 | 1 |
1229 | 2015-05-18 00:00:00 | 247.000000 | 249.899994 | 246.000000 | 248.750000 | 3353200 | 248.750000 | 2.899994 | 1.000000 | 1.750000 | 1 | 248.407480 | 1.750000 | 1 |
1230 | 2015-05-19 00:00:00 | 248.429993 | 251.000000 | 246.149994 | 247.139999 | 3674200 | 247.139999 | 2.570007 | 2.279999 | -1.289994 | 0 | 248.601075 | 1.289994 | 1 |
1231 | 2015-05-20 00:00:00 | 247.130005 | 247.740005 | 241.369995 | 244.350006 | 3755600 | 244.350006 | 0.610000 | 5.760010 | -2.779999 | 0 | 243.068205 | 2.779999 | 0 |
1232 | 2015-05-21 00:00:00 | 243.029999 | 246.619995 | 242.360001 | 245.619995 | 1970600 | 245.619995 | 3.589996 | 0.669998 | 2.589996 | 1 | 245.259083 | 2.589996 | 1 |
1233 | 2015-05-22 00:00:00 | 245.380005 | 248.600006 | 245.009995 | 247.729996 | 2223100 | 247.729996 | 3.220001 | 0.370010 | 2.349991 | 1 | 247.526992 | 2.349991 | 1 |
1234 | 2015-05-26 00:00:00 | 247.679993 | 252.000000 | 246.500000 | 247.460007 | 3498700 | 247.460007 | 4.320007 | 1.179993 | -0.219986 | 0 | 250.122903 | 0.219986 | 1 |
1235 | 2015-05-27 00:00:00 | 248.509995 | 249.500000 | 245.550003 | 247.429993 | 3408200 | 247.429993 | 0.990005 | 2.959992 | -1.080002 | 0 | 246.866082 | 1.080002 | 0 |
1236 | 2015-05-28 00:00:00 | 247.029999 | 251.800003 | 245.050003 | 251.449997 | 3647300 | 251.449997 | 4.770004 | 1.979996 | 4.419998 | 1 | 249.243175 | 4.419998 | 1 |
1237 | 2015-05-29 00:00:00 | 251.000000 | 252.869995 | 249.429993 | 250.800003 | 3789300 | 250.800003 | 1.869995 | 1.570007 | -0.199997 | 0 | 251.124844 | 0.199997 | 0 |
1238 | 2015-06-01 00:00:00 | 251.410004 | 251.600006 | 247.470001 | 249.449997 | 2505100 | 249.449997 | 0.190002 | 3.940003 | -1.960007 | 0 | 248.366001 | 1.960007 | 0 |
1239 | 2015-06-02 00:00:00 | 248.919998 | 249.399994 | 246.300003 | 248.350006 | 2134800 | 248.350006 | 0.479996 | 2.619995 | -0.569992 | 0 | 247.110601 | 0.569992 | 0 |
1240 | 2015-06-03 00:00:00 | 248.199997 | 250.720001 | 247.009995 | 248.990005 | 1775500 | 248.990005 | 2.520004 | 1.190002 | 0.790008 | 1 | 249.149829 | 0.790008 | 1 |
1241 | 2015-06-04 00:00:00 | 247.500000 | 249.300003 | 245.710007 | 245.919998 | 2453600 | 245.919998 | 1.800003 | 1.789993 | -1.580002 | 0 | 247.405325 | 1.580002 | 0 |
1242 | 2015-06-05 00:00:00 | 246.000000 | 249.699997 | 245.679993 | 249.139999 | 3022000 | 249.139999 | 3.699997 | 0.320007 | 3.139999 | 1 | 248.579940 | 3.139999 | 1 |
1243 | 2015-06-08 00:00:00 | 250.850006 | 258.750000 | 250.309998 | 256.290009 | 5017000 | 256.290009 | 7.899994 | 0.540008 | 5.440003 | 1 | 256.724402 | 5.440003 | 1 |
1244 | 2015-06-09 00:00:00 | 255.399994 | 257.739990 | 254.139999 | 256.000000 | 2611100 | 256.000000 | 2.339996 | 1.259995 | 0.600006 | 1 | 256.141126 | 0.600006 | 1 |
1245 | 2015-06-10 00:00:00 | 251.899994 | 254.000000 | 248.500000 | 250.699997 | 3454500 | 250.699997 | 2.100006 | 3.399994 | -1.199997 | 0 | 250.837361 | 1.199997 | 0 |
1246 | 2015-06-11 00:00:00 | 253.259995 | 254.369995 | 250.429993 | 251.410004 | 2044100 | 251.410004 | 1.110000 | 2.830002 | -1.849991 | 0 | 251.807857 | 1.849991 | 0 |
1247 | 2015-06-12 00:00:00 | 250.210007 | 253.460007 | 250.210007 | 250.690002 | 1422300 | 250.690002 | 3.250000 | 0.000000 | 0.479995 | 1 | 252.654952 | 0.479995 | 1 |
1248 | 2015-06-15 00:00:00 | 249.699997 | 251.279999 | 246.009995 | 250.380005 | 2186200 | 250.380005 | 1.580002 | 3.690002 | 0.680008 | 1 | 247.992560 | 0.680008 | 0 |
1249 | 2015-06-16 00:00:00 | 250.130005 | 253.440002 | 249.100006 | 253.119995 | 1984700 | 253.119995 | 3.309997 | 1.029999 | 2.989990 | 1 | 251.849892 | 2.989990 | 1 |
1250 | 2015-06-17 00:00:00 | 252.169998 | 264.359985 | 252.020004 | 260.410004 | 5512900 | 260.410004 | 12.189987 | 0.149994 | 8.240006 | 1 | 261.875579 | 8.240006 | 1 |
1251 | 2015-06-18 00:00:00 | 262.000000 | 263.459991 | 260.019989 | 261.890015 | 2782700 | 261.890015 | 1.459991 | 1.980011 | -0.109985 | 0 | 261.466695 | 0.109985 | 0 |
1252 | 2015-06-19 00:00:00 | 262.399994 | 263.799988 | 260.100006 | 262.510010 | 2463000 | 262.510010 | 1.399994 | 2.299988 | 0.110016 | 1 | 261.576124 | 0.110016 | 0 |
1253 | 2015-06-22 00:00:00 | 262.149994 | 264.399994 | 255.690002 | 259.790009 | 4561100 | 259.790009 | 2.250000 | 6.459992 | -2.359985 | 0 | 258.898997 | 2.359985 | 0 |
1254 | 2015-06-23 00:00:00 | 260.320007 | 268.000000 | 258.570007 | 267.670013 | 3870800 | 267.670013 | 7.679993 | 1.750000 | 7.350006 | 1 | 265.092959 | 7.350006 | 1 |
1255 | 2015-06-24 00:00:00 | 266.980011 | 267.350006 | 263.720001 | 265.170013 | 2412300 | 265.170013 | 0.369995 | 3.260010 | -1.809998 | 0 | 264.579575 | 1.809998 | 0 |
1256 | 2015-06-25 00:00:00 | 266.450012 | 271.410004 | 265.250000 | 268.790009 | 2849200 | 268.790009 | 4.959992 | 1.200012 | 2.339997 | 1 | 269.386163 | 2.339997 | 1 |
1257 | 2015-06-26 00:00:00 | 268.890015 | 269.109985 | 266.000000 | 267.089996 | 3838400 | 267.089996 | 0.219970 | 2.890015 | -1.800019 | 0 | 266.642069 | 1.800019 | 0 |
1258 | 2015-06-29 00:00:00 | 261.950012 | 265.950012 | 260.700012 | 262.019989 | 3478900 | 262.019989 | 4.000000 | 1.250000 | 0.069977 | 1 | 264.061294 | 0.069977 | 1 |
1259 | 2015-06-30 00:00:00 | 264.799988 | 270.920013 | 264.000000 | 268.260010 | 3086900 | 268.260010 | 6.120025 | 0.799988 | 3.460022 | 1 | 268.995747 | 3.460022 | 1 |
1260 | 2015-07-01 00:00:00 | 271.109985 | 272.619995 | 267.850006 | 269.149994 | 2101200 | 269.149994 | 1.510010 | 3.259979 | -1.959991 | 0 | 269.645753 | 1.959991 | 0 |
1261 | 2015-07-02 00:00:00 | 280.200012 | 282.450012 | 273.309998 | 280.019989 | 7163900 | 280.019989 | 2.250000 | 6.890014 | -0.180023 | 0 | 276.606669 | 0.180023 | 0 |
1262 | 2015-07-06 00:00:00 | 278.880005 | 281.690002 | 276.299988 | 279.720001 | 4121900 | 279.720001 | 2.809997 | 2.580017 | 0.839996 | 1 | 278.991496 | 0.839996 | 1 |
1263 | 2015-07-07 00:00:00 | 275.000000 | 275.200012 | 260.769989 | 267.880005 | 6105100 | 267.880005 | 0.200012 | 14.230011 | -7.119995 | 0 | 264.200624 | 7.119995 | 0 |
1264 | 2015-07-08 00:00:00 | 259.320007 | 260.799988 | 254.309998 | 254.960007 | 6221100 | 254.960007 | 1.479981 | 5.010009 | -4.360000 | 0 | 256.527212 | 4.360000 | 0 |
1265 | 2015-07-09 00:00:00 | 259.079987 | 262.950012 | 256.790009 | 257.920013 | 3325100 | 257.920013 | 3.870025 | 2.289978 | -1.159974 | 0 | 260.304907 | 1.159974 | 0 |
1266 | 2015-07-10 00:00:00 | 262.220001 | 263.000000 | 257.820007 | 259.149994 | 2610900 | 259.149994 | 0.779999 | 4.399994 | -3.070007 | 0 | 259.305456 | 3.070007 | 0 |
1267 | 2015-07-13 00:00:00 | 262.250000 | 262.549988 | 256.049988 | 262.160004 | 2960300 | 262.160004 | 0.299988 | 6.200012 | -0.089996 | 0 | 257.585661 | 0.089996 | 0 |
1268 | 2015-07-14 00:00:00 | 262.100006 | 265.989990 | 260.510010 | 265.649994 | 1907600 | 265.649994 | 3.889984 | 1.589996 | 3.549988 | 1 | 263.864664 | 3.549988 | 1 |
1269 | 2015-07-15 00:00:00 | 266.739990 | 267.489990 | 262.079987 | 263.140015 | 2021600 | 263.140015 | 0.750000 | 4.660003 | -3.599975 | 0 | 263.600407 | 3.599975 | 0 |
1270 | 2015-07-16 00:00:00 | 264.220001 | 267.200012 | 263.160004 | 266.679993 | 1616000 | 266.679993 | 2.980011 | 1.059997 | 2.459992 | 1 | 265.630307 | 2.459992 | 1 |
1271 | 2015-07-17 00:00:00 | 272.500000 | 275.540009 | 268.250000 | 274.660004 | 5004100 | 274.660004 | 3.040009 | 4.250000 | 2.160004 | 1 | 271.551988 | 2.160004 | 0 |
1272 | 2015-07-20 00:00:00 | 275.000000 | 286.649994 | 272.540009 | 282.260010 | 4978500 | 282.260010 | 11.649994 | 2.459991 | 7.260010 | 1 | 282.498839 | 7.260010 | 1 |
1273 | 2015-07-21 00:00:00 | 270.049988 | 273.500000 | 266.549988 | 266.769989 | 6108700 | 266.769989 | 3.450012 | 3.500000 | -3.279999 | 0 | 270.006858 | 3.279999 | 1 |
1274 | 2015-07-22 00:00:00 | 261.269989 | 269.440002 | 260.859985 | 267.869995 | 3105000 | 267.869995 | 8.170013 | 0.410004 | 6.600006 | 1 | 267.453993 | 6.600006 | 1 |
1275 | 2015-07-23 00:00:00 | 269.649994 | 269.899994 | 265.269989 | 267.200012 | 2227200 | 267.200012 | 0.250000 | 4.380005 | -2.449982 | 0 | 266.305438 | 2.449982 | 0 |
1276 | 2015-07-24 00:00:00 | 267.380005 | 271.089996 | 263.920013 | 265.410004 | 2836500 | 265.410004 | 3.709991 | 3.459992 | -1.970001 | 0 | 267.584248 | 1.970001 | 0 |
1277 | 2015-07-27 00:00:00 | 262.429993 | 264.429993 | 250.789993 | 253.009995 | 4694200 | 253.009995 | 2.000000 | 11.640000 | -9.419998 | 0 | 255.076685 | 9.419998 | 0 |
1278 | 2015-07-28 00:00:00 | 255.750000 | 265.399994 | 251.839996 | 264.820007 | 3895800 | 264.820007 | 9.649994 | 3.910004 | 9.070007 | 1 | 260.528510 | 9.070007 | 1 |
1279 | 2015-07-29 00:00:00 | 264.269989 | 267.890015 | 262.000000 | 263.820007 | 2790100 | 263.820007 | 3.620026 | 2.269989 | -0.449982 | 0 | 265.298248 | 0.449982 | 0 |
1280 | 2015-07-30 00:00:00 | 262.690002 | 266.940002 | 262.109985 | 266.790009 | 2034600 | 266.790009 | 4.250000 | 0.580017 | 4.100007 | 1 | 265.510637 | 4.100007 | 1 |
1281 | 2015-07-31 00:00:00 | 267.600006 | 269.359985 | 265.119995 | 266.149994 | 2222600 | 266.149994 | 1.759979 | 2.480011 | -1.450012 | 0 | 266.932277 | 1.450012 | 0 |
1282 | 2015-08-03 00:00:00 | 266.290009 | 266.709991 | 257.070007 | 259.989990 | 2553500 | 259.989990 | 0.419982 | 9.220002 | -6.300019 | 0 | 259.449161 | 6.300019 | 0 |
1283 | 2015-08-04 00:00:00 | 260.010010 | 266.720001 | 258.339996 | 266.279999 | 2352500 | 266.279999 | 6.709991 | 1.670014 | 6.269989 | 1 | 264.043190 | 6.269989 | 1 |
1284 | 2015-08-05 00:00:00 | 263.579987 | 271.000000 | 260.399994 | 270.130005 | 6214300 | 270.130005 | 7.420013 | 3.179993 | 6.550018 | 1 | 267.059570 | 6.550018 | 1 |
1285 | 2015-08-06 00:00:00 | 249.539993 | 255.000000 | 236.119995 | 246.130005 | 14623800 | 246.130005 | 5.460007 | 13.419998 | -3.409988 | 0 | 243.716022 | 3.409988 | 0 |
1286 | 2015-08-07 00:00:00 | 243.580002 | 243.729996 | 238.389999 | 242.509995 | 5073400 | 242.509995 | 0.149994 | 5.190003 | -1.070007 | 0 | 239.571110 | 1.070007 | 0 |
1287 | 2015-08-10 00:00:00 | 238.149994 | 242.970001 | 236.050003 | 241.139999 | 4185900 | 241.139999 | 4.820007 | 2.099991 | 2.990005 | 1 | 240.323493 | 2.990005 | 1 |
1288 | 2015-08-11 00:00:00 | 237.149994 | 239.300003 | 234.440002 | 237.369995 | 4264900 | 237.369995 | 2.150009 | 2.709992 | 0.220001 | 1 | 236.663023 | 0.220001 | 0 |
1289 | 2015-08-12 00:00:00 | 235.000000 | 239.770004 | 232.740005 | 238.169998 | 3728000 | 238.169998 | 4.770004 | 2.259995 | 3.169998 | 1 | 237.015216 | 3.169998 | 1 |
1290 | 2015-08-13 00:00:00 | 239.860001 | 246.479996 | 239.119995 | 242.509995 | 4689200 | 242.509995 | 6.619995 | 0.740006 | 2.649994 | 1 | 244.539512 | 2.649994 | 1 |
1291 | 2015-08-14 00:00:00 | 247.240005 | 247.929993 | 241.770004 | 243.149994 | 4364800 | 243.149994 | 0.689988 | 5.470001 | -4.090011 | 0 | 243.462189 | 4.090011 | 0 |
1292 | 2015-08-17 00:00:00 | 255.559998 | 256.589996 | 250.509995 | 254.990005 | 7176700 | 254.990005 | 1.029998 | 5.050003 | -0.569993 | 0 | 252.369833 | 0.569993 | 0 |
1293 | 2015-08-18 00:00:00 | 255.380005 | 260.950012 | 253.559998 | 260.720001 | 4195000 | 260.720001 | 5.570007 | 1.820007 | 5.339996 | 1 | 258.364748 | 5.339996 | 1 |
1294 | 2015-08-19 00:00:00 | 260.329987 | 260.649994 | 255.020004 | 255.250000 | 3596200 | 255.250000 | 0.320007 | 5.309983 | -5.079987 | 0 | 256.353549 | 5.079987 | 0 |
1295 | 2015-08-20 00:00:00 | 252.059998 | 254.559998 | 241.899994 | 242.179993 | 4905800 | 242.179993 | 2.500000 | 10.160004 | -9.880005 | 0 | 246.243142 | 9.880005 | 0 |
1296 | 2015-08-21 00:00:00 | 236.000000 | 243.800003 | 230.509995 | 230.770004 | 6590200 | 230.770004 | 7.800003 | 5.490005 | -5.229996 | 0 | 238.084702 | 5.229996 | 1 |
1297 | 2015-08-24 00:00:00 | 202.789993 | 231.399994 | 195.000000 | 218.869995 | 9581600 | 218.869995 | 28.610001 | 7.789993 | 16.080002 | 1 | 220.348040 | 16.080002 | 1 |
1298 | 2015-08-25 00:00:00 | 230.520004 | 230.899994 | 219.119995 | 220.029999 | 4327300 | 220.029999 | 0.379990 | 11.400009 | -10.490005 | 0 | 222.044155 | 10.490005 | 0 |
1299 | 2015-08-26 00:00:00 | 227.929993 | 228.000000 | 215.509995 | 224.839996 | 4963000 | 224.839996 | 0.070007 | 12.419998 | -3.089997 | 0 | 218.434014 | 3.089997 | 0 |
1300 | 2015-08-27 00:00:00 | 231.000000 | 244.750000 | 230.809998 | 242.990005 | 7656000 | 242.990005 | 13.750000 | 0.190002 | 11.990005 | 1 | 241.984715 | 11.990005 | 1 |
1301 | 2015-08-28 00:00:00 | 241.860001 | 251.449997 | 241.570007 | 248.479996 | 5513700 | 248.479996 | 9.589996 | 0.289994 | 6.619995 | 1 | 249.326112 | 6.619995 | 1 |
1302 | 2015-08-31 00:00:00 | 245.619995 | 254.949997 | 245.509995 | 249.059998 | 4700200 | 249.059998 | 9.330002 | 0.110000 | 3.440003 | 1 | 253.003036 | 3.440003 | 1 |
1303 | 2015-09-01 00:00:00 | 240.339996 | 246.000000 | 236.970001 | 238.630005 | 5454800 | 238.630005 | 5.660004 | 3.369995 | -1.709991 | 0 | 242.249055 | 1.709991 | 1 |
1304 | 2015-09-02 00:00:00 | 245.300003 | 247.880005 | 239.779999 | 247.690002 | 4629200 | 247.690002 | 2.580002 | 5.520004 | 2.389999 | 1 | 243.045880 | 2.389999 | 0 |
1305 | 2015-09-03 00:00:00 | 252.059998 | 252.080002 | 245.000000 | 245.570007 | 4194800 | 245.570007 | 0.020004 | 7.059998 | -6.489991 | 0 | 246.528587 | 6.489991 | 0 |
1306 | 2015-09-04 00:00:00 | 240.889999 | 244.089996 | 238.199997 | 241.929993 | 3689200 | 241.929993 | 3.199997 | 2.690002 | 1.039994 | 1 | 241.280379 | 1.039994 | 0 |
1307 | 2015-09-08 00:00:00 | 245.050003 | 249.160004 | 244.050003 | 248.169998 | 3138200 | 248.169998 | 4.110001 | 1.000000 | 3.119995 | 1 | 247.457786 | 3.119995 | 1 |
1308 | 2015-09-09 00:00:00 | 252.050003 | 254.250000 | 248.300003 | 248.910004 | 3390800 | 248.910004 | 2.199997 | 3.750000 | -3.139999 | 0 | 250.806474 | 3.139999 | 0 |
1309 | 2015-09-10 00:00:00 | 247.229996 | 250.720001 | 245.330002 | 248.479996 | 2709000 | 248.479996 | 3.490005 | 1.899994 | 1.250000 | 1 | 248.447129 | 1.250000 | 1 |
1310 | 2015-09-11 00:00:00 | 247.639999 | 250.240005 | 244.729996 | 250.240005 | 2350800 | 250.240005 | 2.600006 | 2.910003 | 2.600006 | 1 | 247.362847 | 2.600006 | 1 |
1311 | 2015-09-14 00:00:00 | 251.100006 | 254.250000 | 249.669998 | 253.190002 | 2890900 | 253.190002 | 3.149994 | 1.430008 | 2.089996 | 1 | 252.386035 | 2.089996 | 1 |
1312 | 2015-09-15 00:00:00 | 252.750000 | 254.600006 | 249.500000 | 253.570007 | 2933500 | 253.570007 | 1.850006 | 3.250000 | 0.820007 | 1 | 251.593032 | 0.820007 | 0 |
1313 | 2015-09-16 00:00:00 | 253.039993 | 262.880005 | 252.880005 | 262.250000 | 4417100 | 262.250000 | 9.840012 | 0.159988 | 9.210007 | 1 | 260.798413 | 9.210007 | 1 |
1314 | 2015-09-17 00:00:00 | 263.959991 | 265.500000 | 260.690002 | 262.070007 | 3585800 | 262.070007 | 1.540009 | 3.269989 | -1.889984 | 0 | 262.520481 | 1.889984 | 0 |
1315 | 2015-09-18 00:00:00 | 257.959991 | 263.820007 | 257.500000 | 260.619995 | 3763100 | 260.619995 | 5.860016 | 0.459991 | 2.660004 | 1 | 262.204123 | 2.660004 | 1 |
1316 | 2015-09-21 00:00:00 | 263.980011 | 271.570007 | 255.800003 | 264.200012 | 6120200 | 264.200012 | 7.589996 | 8.180008 | 0.220001 | 1 | 263.839012 | 0.220001 | 0 |
1317 | 2015-09-22 00:00:00 | 259.029999 | 262.649994 | 255.869995 | 260.940002 | 3664400 | 260.940002 | 3.619995 | 3.160004 | 1.910003 | 1 | 259.394369 | 1.910003 | 0 |
1318 | 2015-09-23 00:00:00 | 261.950012 | 262.079987 | 257.579987 | 261.059998 | 2600800 | 261.059998 | 0.129975 | 4.370025 | -0.890014 | 0 | 258.522019 | 0.890014 | 0 |
1319 | 2015-09-24 00:00:00 | 259.529999 | 263.450012 | 256.209991 | 263.119995 | 3448200 | 263.119995 | 3.920013 | 3.320008 | 3.589996 | 1 | 260.021025 | 3.589996 | 0 |
1320 | 2015-09-25 00:00:00 | 266.609985 | 266.910004 | 256.149994 | 256.910004 | 3773400 | 256.910004 | 0.300019 | 10.459991 | -9.699981 | 0 | 258.737264 | 9.699981 | 0 |
1321 | 2015-09-28 00:00:00 | 257.350006 | 259.790009 | 246.610001 | 248.429993 | 4901100 | 248.429993 | 2.440003 | 10.740005 | -8.920013 | 0 | 251.041897 | 8.920013 | 0 |
1322 | 2015-09-29 00:00:00 | 250.460007 | 254.729996 | 245.460007 | 246.649994 | 3703200 | 246.649994 | 4.269989 | 5.000000 | -3.810013 | 0 | 249.985795 | 3.810013 | 0 |
1323 | 2015-09-30 00:00:00 | 252.000000 | 252.399994 | 242.339996 | 248.399994 | 4929600 | 248.399994 | 0.399994 | 9.660004 | -3.600006 | 0 | 244.826738 | 3.600006 | 0 |
1324 | 2015-10-01 00:00:00 | 247.509995 | 248.500000 | 237.130005 | 239.880005 | 4573000 | 239.880005 | 0.990005 | 10.379990 | -7.629990 | 0 | 240.286718 | 7.629990 | 0 |
1325 | 2015-10-02 00:00:00 | 235.600006 | 247.699997 | 234.929993 | 247.570007 | 4424000 | 247.570007 | 12.099991 | 0.670013 | 11.970001 | 1 | 244.857630 | 11.970001 | 1 |
1326 | 2015-10-05 00:00:00 | 248.839996 | 249.839996 | 244.130005 | 246.149994 | 3689900 | 246.149994 | 1.000000 | 4.709991 | -2.690002 | 0 | 245.887848 | 2.690002 | 0 |
1327 | 2015-10-06 00:00:00 | 240.000000 | 243.029999 | 235.580002 | 241.460007 | 5225200 | 241.460007 | 3.029999 | 4.419998 | 1.460007 | 1 | 238.949975 | 1.460007 | 0 |
1328 | 2015-10-07 00:00:00 | 236.630005 | 237.699997 | 229.119995 | 231.960007 | 6814000 | 231.960007 | 1.069992 | 7.510010 | -4.669998 | 0 | 231.642579 | 4.669998 | 0 |
1329 | 2015-10-08 00:00:00 | 230.080002 | 230.720001 | 221.309998 | 226.720001 | 6133200 | 226.720001 | 0.639999 | 8.770004 | -3.360001 | 0 | 223.797090 | 3.360001 | 0 |
1330 | 2015-10-09 00:00:00 | 220.929993 | 224.369995 | 218.360001 | 220.690002 | 6158400 | 220.690002 | 3.440002 | 2.569992 | -0.239991 | 0 | 221.629575 | 0.239991 | 1 |
1331 | 2015-10-12 00:00:00 | 222.990005 | 223.000000 | 215.270004 | 215.580002 | 3836300 | 215.580002 | 0.009995 | 7.720001 | -7.410003 | 0 | 216.984461 | 7.410003 | 0 |
1332 | 2015-10-13 00:00:00 | 213.279999 | 222.520004 | 211.130005 | 219.250000 | 5171500 | 219.250000 | 9.240005 | 2.149994 | 5.970001 | 1 | 219.088487 | 5.970001 | 1 |
1333 | 2015-10-14 00:00:00 | 220.669998 | 220.949997 | 215.429993 | 216.880005 | 3104400 | 216.880005 | 0.279999 | 5.240005 | -3.789993 | 0 | 216.754790 | 3.789993 | 0 |
1334 | 2015-10-15 00:00:00 | 216.429993 | 221.729996 | 213.699997 | 221.309998 | 2844200 | 221.309998 | 5.300003 | 2.729996 | 4.880005 | 1 | 218.548464 | 4.880005 | 1 |
1335 | 2015-10-16 00:00:00 | 223.039993 | 230.479996 | 222.869995 | 227.009995 | 4334500 | 227.009995 | 7.440003 | 0.169998 | 3.970002 | 1 | 228.842348 | 3.970002 | 1 |
1336 | 2015-10-19 00:00:00 | 226.500000 | 231.149994 | 224.940002 | 228.100006 | 2507900 | 228.100006 | 4.649994 | 1.559998 | 1.600006 | 1 | 228.951577 | 1.600006 | 1 |
1337 | 2015-10-20 00:00:00 | 227.720001 | 228.600006 | 202.000000 | 213.029999 | 14863300 | 213.029999 | 0.880005 | 25.720001 | -14.690002 | 0 | 208.889861 | 14.690002 | 0 |
1338 | 2015-10-21 00:00:00 | 211.990005 | 214.809998 | 208.800003 | 210.089996 | 4151500 | 210.089996 | 2.819993 | 3.190002 | -1.900009 | 0 | 211.721162 | 1.900009 | 1 |
1339 | 2015-10-22 00:00:00 | 211.559998 | 215.750000 | 209.399994 | 211.720001 | 2825200 | 211.720001 | 4.190002 | 2.160004 | 0.160003 | 1 | 213.196504 | 0.160003 | 1 |
1340 | 2015-10-23 00:00:00 | 215.000000 | 215.350006 | 207.690002 | 209.089996 | 4235500 | 209.089996 | 0.350006 | 7.309998 | -5.910004 | 0 | 209.591701 | 5.910004 | 0 |
1341 | 2015-10-26 00:00:00 | 211.380005 | 215.880005 | 210.000000 | 215.259995 | 3391400 | 215.259995 | 4.500000 | 1.380005 | 3.879990 | 1 | 213.859068 | 3.879990 | 1 |
1342 | 2015-10-27 00:00:00 | 214.839996 | 217.100006 | 207.509995 | 210.350006 | 3519400 | 210.350006 | 2.260010 | 7.330001 | -4.489990 | 0 | 210.992577 | 4.489990 | 0 |
1343 | 2015-10-28 00:00:00 | 211.309998 | 213.449997 | 208.300003 | 212.960007 | 2728600 | 212.960007 | 2.139999 | 3.009995 | 1.650009 | 1 | 210.616252 | 1.650009 | 0 |
1344 | 2015-10-29 00:00:00 | 211.750000 | 213.750000 | 210.639999 | 211.630005 | 1805000 | 211.630005 | 2.000000 | 1.110001 | -0.119995 | 0 | 212.369236 | 0.119995 | 1 |
1345 | 2015-10-30 00:00:00 | 210.399994 | 211.630005 | 203.889999 | 206.929993 | 4438900 | 206.929993 | 1.230011 | 6.509995 | -3.470001 | 0 | 206.324191 | 3.470001 | 0 |
1346 | 2015-11-02 00:00:00 | 208.919998 | 215.800003 | 207.220001 | 213.789993 | 3927900 | 213.789993 | 6.880005 | 1.699997 | 4.869995 | 1 | 213.124490 | 4.869995 | 1 |
1347 | 2015-11-03 00:00:00 | 213.850006 | 214.440002 | 207.750000 | 208.350006 | 8332500 | 208.350006 | 0.589996 | 6.100006 | -5.500000 | 0 | 209.550914 | 5.500000 | 0 |
1348 | 2015-11-04 00:00:00 | 227.000000 | 232.740005 | 225.199997 | 231.630005 | 12726400 | 231.630005 | 5.740005 | 1.800003 | 4.630005 | 1 | 230.169810 | 4.630005 | 1 |
1349 | 2015-11-05 00:00:00 | 230.580002 | 234.580002 | 229.190002 | 231.770004 | 4496800 | 231.770004 | 4.000000 | 1.390000 | 1.190002 | 1 | 232.618904 | 1.190002 | 1 |
1350 | 2015-11-06 00:00:00 | 230.699997 | 233.360001 | 229.500000 | 232.360001 | 2445300 | 232.360001 | 2.660004 | 1.199997 | 1.660004 | 1 | 231.776172 | 1.660004 | 1 |
1351 | 2015-11-09 00:00:00 | 232.990005 | 232.990005 | 224.309998 | 225.330002 | 3850900 | 225.330002 | 0.000000 | 8.680007 | -7.660003 | 0 | 226.243725 | 7.660003 | 0 |
1352 | 2015-11-10 00:00:00 | 223.479996 | 223.699997 | 216.080002 | 216.500000 | 4617000 | 216.500000 | 0.220001 | 7.399994 | -6.979996 | 0 | 217.887863 | 6.979996 | 0 |
1353 | 2015-11-11 00:00:00 | 217.770004 | 219.479996 | 213.630005 | 219.080002 | 3347800 | 219.080002 | 1.709992 | 4.139999 | 1.309998 | 1 | 215.864874 | 1.309998 | 0 |
1354 | 2015-11-12 00:00:00 | 217.850006 | 219.000000 | 212.660004 | 212.940002 | 2915900 | 212.940002 | 1.149994 | 5.190002 | -4.910004 | 0 | 214.693110 | 4.910004 | 0 |
1355 | 2015-11-13 00:00:00 | 212.949997 | 212.990005 | 206.520004 | 207.190002 | 3430300 | 207.190002 | 0.040008 | 6.429993 | -5.759995 | 0 | 207.949932 | 5.759995 | 0 |
1356 | 2015-11-16 00:00:00 | 206.089996 | 214.979996 | 205.800003 | 214.309998 | 2925400 | 214.309998 | 8.890000 | 0.289993 | 8.220002 | 1 | 213.016137 | 8.220002 | 1 |
1357 | 2015-11-17 00:00:00 | 215.199997 | 216.000000 | 211.399994 | 214.000000 | 2148700 | 214.000000 | 0.800003 | 3.800003 | -1.199997 | 0 | 212.802525 | 1.199997 | 0 |
1358 | 2015-11-18 00:00:00 | 214.500000 | 221.380005 | 212.520004 | 221.070007 | 2811900 | 221.070007 | 6.880005 | 1.979996 | 6.570007 | 1 | 218.488057 | 6.570007 | 1 |
1359 | 2015-11-19 00:00:00 | 220.539993 | 226.190002 | 220.300003 | 221.800003 | 2504400 | 221.800003 | 5.650009 | 0.239990 | 1.260010 | 1 | 224.815584 | 1.260010 | 1 |
1360 | 2015-11-20 00:00:00 | 223.490005 | 225.000000 | 213.580002 | 220.009995 | 4400700 | 220.009995 | 1.509995 | 9.910003 | -3.480010 | 0 | 217.074387 | 3.480010 | 0 |
1361 | 2015-11-23 00:00:00 | 217.350006 | 219.179993 | 214.679993 | 217.750000 | 2526200 | 217.750000 | 1.829987 | 2.670013 | 0.399994 | 1 | 216.649856 | 0.399994 | 0 |
1362 | 2015-11-24 00:00:00 | 215.369995 | 221.000000 | 215.000000 | 218.250000 | 2480300 | 218.250000 | 5.630005 | 0.369995 | 2.880005 | 1 | 219.536733 | 2.880005 | 1 |
1363 | 2015-11-25 00:00:00 | 221.339996 | 230.830002 | 220.380005 | 229.639999 | 3990800 | 229.639999 | 9.490006 | 0.959991 | 8.300003 | 1 | 228.241254 | 8.300003 | 1 |
1364 | 2015-11-27 00:00:00 | 231.059998 | 232.250000 | 227.009995 | 231.610001 | 1949400 | 231.610001 | 1.190002 | 4.050003 | 0.550003 | 1 | 228.779617 | 0.550003 | 0 |
1365 | 2015-11-30 00:00:00 | 231.789993 | 234.279999 | 229.080002 | 230.259995 | 2659800 | 230.259995 | 2.490006 | 2.709991 | -1.529998 | 0 | 231.589144 | 1.529998 | 0 |
1366 | 2015-12-01 00:00:00 | 231.059998 | 238.000000 | 231.050003 | 237.190002 | 3734000 | 237.190002 | 6.940002 | 0.009995 | 6.130004 | 1 | 236.561772 | 6.130004 | 1 |
1367 | 2015-12-02 00:00:00 | 237.000000 | 238.600006 | 231.229996 | 231.990005 | 2981500 | 231.990005 | 1.600006 | 5.770004 | -5.009995 | 0 | 233.758067 | 5.009995 | 0 |
1368 | 2015-12-03 00:00:00 | 235.479996 | 237.449997 | 230.000000 | 232.710007 | 2939600 | 232.710007 | 1.970001 | 5.479996 | -2.769989 | 0 | 232.763013 | 2.769989 | 0 |
1369 | 2015-12-04 00:00:00 | 232.460007 | 233.270004 | 227.660004 | 230.380005 | 2573600 | 230.380005 | 0.809997 | 4.800003 | -2.080002 | 0 | 229.300595 | 2.080002 | 0 |
1370 | 2015-12-07 00:00:00 | 227.699997 | 235.630005 | 226.149994 | 231.130005 | 3144200 | 231.130005 | 7.930008 | 1.550003 | 3.430008 | 1 | 232.863847 | 3.430008 | 1 |
1371 | 2015-12-08 00:00:00 | 227.520004 | 228.800003 | 224.199997 | 226.720001 | 2687600 | 226.720001 | 1.279999 | 3.320007 | -0.800003 | 0 | 225.866598 | 0.800003 | 0 |
1372 | 2015-12-09 00:00:00 | 226.699997 | 227.500000 | 220.720001 | 224.520004 | 3057800 | 224.520004 | 0.800003 | 5.979996 | -2.179993 | 0 | 222.650936 | 2.179993 | 0 |
1373 | 2015-12-10 00:00:00 | 224.710007 | 228.490005 | 223.639999 | 227.070007 | 2067000 | 227.070007 | 3.779998 | 1.070008 | 2.360000 | 1 | 226.814224 | 2.360000 | 1 |
1374 | 2015-12-11 00:00:00 | 225.240005 | 225.750000 | 216.639999 | 217.020004 | 3268700 | 217.020004 | 0.509995 | 8.600006 | -8.220001 | 0 | 218.982769 | 8.220001 | 0 |
1375 | 2015-12-14 00:00:00 | 217.509995 | 220.919998 | 214.869995 | 218.580002 | 2827100 | 218.580002 | 3.410003 | 2.640000 | 1.070007 | 1 | 218.135764 | 1.070007 | 0 |
1376 | 2015-12-15 00:00:00 | 221.820007 | 222.220001 | 218.000000 | 221.089996 | 2244400 | 221.089996 | 0.399994 | 3.820007 | -0.730011 | 0 | 219.070537 | 0.730011 | 0 |
1377 | 2015-12-16 00:00:00 | 222.100006 | 234.880005 | 220.729996 | 234.509995 | 5104300 | 234.509995 | 12.779999 | 1.370010 | 12.409989 | 1 | 231.406348 | 12.409989 | 1 |
1378 | 2015-12-17 00:00:00 | 233.940002 | 237.759995 | 229.809998 | 233.389999 | 3298600 | 233.389999 | 3.819993 | 4.130004 | -0.550003 | 0 | 233.766178 | 0.550003 | 1 |
1379 | 2015-12-18 00:00:00 | 232.889999 | 235.899994 | 229.289993 | 230.460007 | 3014200 | 230.460007 | 3.009995 | 3.600006 | -2.429992 | 0 | 232.447627 | 2.429992 | 1 |
1380 | 2015-12-21 00:00:00 | 231.690002 | 235.830002 | 231.080002 | 232.559998 | 1953200 | 232.559998 | 4.140000 | 0.610000 | 0.869996 | 1 | 234.429860 | 0.869996 | 1 |
1381 | 2015-12-22 00:00:00 | 234.990005 | 236.550003 | 229.630005 | 229.949997 | 1961500 | 229.949997 | 1.559998 | 5.360000 | -5.040008 | 0 | 232.025529 | 5.040008 | 0 |
1382 | 2015-12-23 00:00:00 | 232.179993 | 233.449997 | 228.130005 | 229.699997 | 1555000 | 229.699997 | 1.270004 | 4.049988 | -2.479996 | 0 | 229.964450 | 2.479996 | 0 |
1383 | 2015-12-24 00:00:00 | 230.559998 | 231.880005 | 228.279999 | 230.570007 | 708000 | 230.570007 | 1.320007 | 2.279999 | 0.010009 | 1 | 229.718576 | 0.010009 | 0 |
1384 | 2015-12-28 00:00:00 | 231.490005 | 231.979996 | 225.539993 | 228.949997 | 1901300 | 228.949997 | 0.489991 | 5.950012 | -2.540008 | 0 | 227.202709 | 2.540008 | 0 |
1385 | 2015-12-29 00:00:00 | 230.059998 | 237.720001 | 229.550003 | 237.190002 | 2406300 | 237.190002 | 7.660003 | 0.509995 | 7.130004 | 1 | 235.780785 | 7.130004 | 1 |
1386 | 2015-12-30 00:00:00 | 236.600006 | 243.630005 | 235.669998 | 238.089996 | 3697900 | 238.089996 | 7.029999 | 0.930008 | 1.489990 | 1 | 241.478295 | 1.489990 | 1 |
1387 | 2015-12-31 00:00:00 | 238.509995 | 243.449997 | 238.369995 | 240.009995 | 2683200 | 240.009995 | 4.940002 | 0.140000 | 1.500000 | 1 | 242.256177 | 1.500000 | 1 |
from sklearn.metrics import confusion_matrix,accuracy_score
ac = accuracy_score(y_test2,classifier.predict(X_test2))
ac
0.8373015873015873
We can see from above that the accuracy is 0.837, which is high.
Summary¶
Either summarize what you did, or summarize the results. Maybe 3 sentences.
So, in the project, I use linear regression to predict the future close price for Tesla and find the prediction is very close to the true price. Also, I use K-Nearest Neighbor to classify the data into worthing trading, where the close price is higher than the open price and not worth trading, where the close price is lower than the open price. The K-Nearest Neighbor also has high accuracy. Therefore, we can see although the stock market is volatile, we can still use some methods from Python to figure out the trend and the relationships between different prices.
References¶
What is the source of your dataset(s)?
https://www.kaggle.com/datasets/rpaguirre/tesla-stock-price Tesla Stock Price Dataset
Were any portions of the code or ideas taken from another source? List those sources here and say how they were used.
https://www.analyticsvidhya.com/blog/2021/01/a-quick-introduction-to-k-nearest-neighbor-knn-classification-using-python/ I learned how to use K-Nearest Neighbor Classification from the website.
Created in Deepnote